Pitfalls and Paradoxes in the

History of Probability Theory
(predicting the unpredictable)

Michael Shlesinger
Office of Naval Research

Gdansk July 12, 2018

If you have 5 dogs, 3 will be asleep

Throwing the bones Astrogali (knucklebones)

From Games, Gods, and Gambling, FN David

Al-zar (dice) becomes hazard

4
upper bone
opposite side
flat lateral side
3
opposite side
6
Greeks throws (4 bones)

$$
\begin{aligned}
& 1,3,4,6 \\
& 1,1,1,1
\end{aligned}
$$

Venus
Going to the Dogs
Romans throws (5 bones)

$$
1,3,3,4,4 \quad \text { Zeus }
$$

I CHING
 8 trigrams/ 64 pairs of trigrams

	heaven/strength earth/weakness	Too many outcomes to check for the persistence of statistical ratios?
$\overline{\#}$	activity/thunder	
	bending/wind	An oracle, not a mathematical exercise.
\square	pit/water/danger	
-	Brightness/fire/el	
=	Stop/mountain/fir	
-	Pleasure/joyful/c	water

Galileo and Newton

Throw 3 dice. More likely to get a 10 then a 9. But there are six ways to make either number

10	\# ways		$\underline{9}$	\# ways
1. 622	3	1.	333	1
2. 523	6	2.	342	6
3. 424	3	3.	351	6
4. 631	6	4.	621	6
5. 433	3	5.	522	3
6. 541	$\underline{6}$	6.	441	3
	27 ways			25 ways
6X6X6=216 total outcomes				
Prob (10)	/216		prob	216

Would you make this bet, of a 10 before a 9, if you cannot afford to lose?
(risk-benefit analysis)

Yes D. Bernoulli

controversy

1 in 200 die from smallpox variolation (a type of innoculation)
14 in 200 die in invariolated population

Suppose 200 fatal diseases and 200 innoculations
Each innoculation has probability 1/200 to kill you.

If you elect to take all 200 innoculations does that improve your odds to live or to die?

D'Alembert wrote, "to enjoy the present and not trouble oneself about the future, is common logic, a logic half good, half bad"

Talmudic Paradox

Without looking, choose a draw and pick a coin at random, then look to see it is
What is the probability that the other coin in the draw is also
Solution \#1: You either picked draw \#1 or draw \#2, each has probability $1 / 2$
so probability that the other coin is $O=1 / 2$.

 Thomas Bayes 1702-1761
$1 / 5$

$$
P(A \cap B)=P(A \mid B) P(B)=P(B \mid A) P(A)
$$

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

2

$$
P(\text { draw } 1 \mid \text { blue })=\frac{P(\text { blue } \mid \text { draw } 1) P(\text { draw } 1)}{\sum_{i=1}^{3} P(\text { blue } \mid \text { draw } i) P(\text { draw } i)}
$$

$$
P(\text { draw } 1 \mid \text { blue })=\frac{1 \cdot 1 / 3}{1 \cdot 1 / 3+1 / 2 \cdot 1 / 3}=2 / 3
$$

$$
P(\text { draw } 2 \mid \text { blue })=\frac{1 / 2 \cdot 1 / 3}{1 \cdot 1 / 3+1 / 2 \bullet 1 / 3}=1 / 3
$$

Employing Bayes' Theorem 1764

Urn with N white marbles and 1 red marble

$$
\begin{aligned}
& P\left(W_{1} \mid R_{2}\right)= \frac{P\left(R_{2} \mid W_{1}\right) P\left(W_{1}\right)}{P\left(R_{2} \mid W_{1}\right) P\left(W_{1}\right)+P\left(R_{2} \backslash R_{1}\right) P\left(R_{1}\right)}=1 \\
& 0^{2} \\
& \text { statistical inference }
\end{aligned}
$$

Chevalier de Mere - Grande Scandale

(real name Antonie Gombaud)

Throw a 6 with one die, ..., advantage in undertaking to do it in 4 throws (odds in your favor)
Throw 2 sixes in 24 throws, ..., a disadvantage
(odds against you)

$$
\text { But } 4 / 6=24 / 36
$$

The start of the famous Pascal-Fermat letters 1654

SOLUTION

Probability (no six in 1 throw) =5/6
$\operatorname{Prob}($ no 6 's in N throws $)=(5 / 6)^{\mathrm{N}}$
$P_{6}=\operatorname{Prob}\left(\right.$ at least one 6) $=1-(5 / 6)^{N}$

Probability (no [6,6] in throw of 2 dice) $=35 / 36$
$\operatorname{Prob}($ no $[6,6]$ in N throws $)=(35 / 36)^{N}$
$P_{[6,6]}=\operatorname{Prob}\left(\right.$ at least one pair of 6 's) $=1-(35 / 36)^{\mathrm{N}}$

$$
N=4, P_{6}=0.5177
$$

$$
\mathrm{N}=24, \mathrm{P}_{[6,6]}=0.4914
$$

More Pascal and Fermat (1654)

A, B, C play a game. A needs 1 win, B and C need 2 wins.
How should the stake be divided if the game is not continued?

Answer: A:B:C=17:5:5

Winning sequences for B
BB prob 1/3X1/3=3/27
BCB prob 1/3X1/3X1/3 =1/27
CBB prob $=1 / 27$
Total $=5 / 27$

At most 3 more plays with $\mathbf{3}^{\mathbf{3}}=27$
Possible outcomes even though play could end immediately with a win by A

The 5 winning sequences
for player B
BBB
BCB
BBC
CBB
BBA

Bernoulli Trials

m successes in n trials

$$
P_{m}=\frac{n!}{m!(n-m)!} p^{m}(1-p)^{n-m}
$$

D'Alembert wrote Probability of not seeing an $\mathrm{H} \quad \mathrm{H}$
 $=1 / 3$

Following Pascal-Fermat (1654), Huygens (1657) wrote a book on the P-F correspondence and presented a problem set with answers.

These problems were solved in Jacob Bernoulli's - Ars Conjectandi, published posthumously in 1713 with the help of his nephew, Nicholas Bernoulli. J. Bernoulli also treats the theory of permutations and combinations and applications to civil, moral, and economic questions.

The book was reviewed by Jacob's brother John who called it - a monster which bears my brother's name.

$$
P_{m}=\frac{n!}{m!(n-m)!} p^{m}(1-p)^{n-m} \quad \text { Bernoulli trials }
$$

-Bernoulli numbers
-Duration of play N (first, first passage time)
$<N(R)>\sim R^{2}$
J. Bernoulli 1713
$<R^{2}(N)>\sim N$
A. Einstein 1905

Note: probability of m
success in n trials is zero
if $\mathrm{m}>\mathrm{n}$, a built in diffusion
front.

Abraham de Moivre (1667-1754)

(predicted his own date of death seven years in advance)

Imprisoned in France, (edit of Nantes revoked 1685) moved to England, but no real job, despite being the mathematical equal of Jacob Bernoulli and a close friend of Newton.

Worked out of Slaughter's Coffee House (site of 1748 chess championship) Doctrine of Chances (1718 dedicated to Newton, last edition 1756)
Annuities Upon Lives (1724)) first actuarial book

Introduced (1756 edition) central limit theorem for Bernoulli trials Introduced generating functions to solve difference equations
In duration of play derives

$$
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta
$$

introduced

$$
\begin{aligned}
& \log (n-1)!=\left(n-\frac{1}{2}\right) \log n-n+\log \widehat{\beta}+\sum_{r=1}^{\infty} \frac{\begin{array}{c}
\text { Sterling approximation } \\
\sqrt{2 \pi}
\end{array}(-1)^{r-1} B_{r}}{2 r(2 r-1) n^{2 r-1}} \\
& B=1-\frac{1}{12}+\frac{1}{360}-\Lambda
\end{aligned}
$$

DeMoivre

(1756) $3^{\text {rd }}$ edition of The Doctrine of Chances The First Limit Theorem

- For Bernoulli trials using Stirling's approximation, continuum limit
" I conclude that if m or $n / 2$ be a quantity infinitely great, then the hyperbolic logarithm of the ratio, which is a term distant from the middle by an interval I, has to the middle term, is -2 I//n"

Modern notation
$P_{\lambda}(n) \sim \exp \left(-2 \lambda^{2} / n\right)$

The Gaussian

Johann Carl Friedrich Gauss

THF ANALIS'T;

MATHEAATICAL MUSEUM.
cuvta: い1*

NF.W E.L.LCIDATIUNS, UISCONERILS ANIIIMPROVEMENTS.

MATHEMIATICS.

WITH COLI.ETHONS OF Qt'sTIONS

EY JNGENJOTS C(HAKESP(INIHENTX

PHJL.ADEL.PRIA:

180%.

See American Science in the Age of Jefferson, Green 1984

Adrain 1808 (survey meausrements)

Gauss 1809 (astronomical measurements)

ARTICLE XIV.

The quastion which I propose to resolve is this: A on B Sulposing $A B$ to be the urue value of any quantity, of which the measure by observation or experiment is $A b$, the error being $\mathrm{B} b$; what is the expression of the probatility that the error Bo happens in measuring AB?

Let AB, BC, \&c. be several successive $\mathrm{A} \cdot \mathrm{B} 6 \quad \mathrm{C} \boldsymbol{c}$ distances of which the values by measure are $A b, b c$, \&ce. the whole crror being Cc : now supposing the measures $A b, b c$, to be given and also the whole crror $C \subset$, we assume as an evident principle that the most probable distances $\Lambda B, B C$ are proportional to the measures $A b, b c$; and therefore the errors belonging to AB, BC are proportional to their lengths, or to their measured values $A b, b c$. If therefore we represent the values of AB, BC, or of their measures $\mathrm{Ab}, b c$, by a, b, the whole crror Cc by E , and the errors of the measures $\mathrm{A} b_{1} b c$ by x, y, we must, for the greatest probability, have the equation -

$\frac{x}{a}=\frac{y}{b}$.

Let X and Y be similar functions of a, x, and of b, y, expressing the probabilities that the errors x, y, happen in the distances a, b; and, by the fundaaental principle of the doctrine of chance, the probability that both these errors happen together will be expressed by the product XY. If now we were to determine the valucs of x and y from the equations $x+y=\mathrm{E}$, and $\mathrm{XY}=$ maximum, we ought evidently to arrive at the equation $\frac{x}{a}=\frac{y}{b}$: and since x and y are rational functions of the simplest order possible
of a, b and E, we ought to arrive at the cquation $\frac{x}{a}=\frac{y}{b}$ without tho intervention of roots, in other words by simple equations; or, which amounts to the same thing in effiect, if there be several forms of X and Y that will fulfit the reguircd condition, we must choose the simplest possible, as having the greatest possible degree of probability.
Let $\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}$, be the logarithms of X and Y , to any base or moduluse: and when $\mathrm{XY}=$ max. its logarithm $\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}=$ max. and therefore $\dot{X}^{\prime}+\dot{Y}^{\prime}=0$, which fluxional equation we may express by $\mathrm{X}^{\prime \prime} \dot{x}+\mathrm{Y}^{\prime \prime} \dot{y}=0$; for as X^{\prime} involves only the variable quantity x, its fluxion X^{\prime} will evidently involve only the fluxion of x; in like manner the fluxion of Y^{\prime} may be expressed by $\mathrm{Y}^{\prime \prime}{ }^{\prime}$; and from the equation $\mathrm{X}^{\prime \prime} \dot{x}+\mathrm{Y}^{\prime \prime} \dot{y}=0$ we have $\mathrm{X}^{\prime \prime} \dot{x}=-\mathrm{Y}^{\prime \prime} \dot{y}$: but since $x+y=\mathrm{E}$ we have also $\dot{x}+\dot{y}=0$, and $\dot{x}=-, \dot{y}$ by which dividing the 'cquation $\mathrm{X}^{\prime \prime} \dot{x}=-\mathrm{Y}^{\prime \prime} \dot{y}$, we obtain $\mathrm{X}^{\prime \prime}=\mathrm{Y}^{\prime \prime}$.

Now this equation ought to be equivilent to $\frac{x}{a}=\frac{y}{b}$; and this circumstance is effected in the simplest manner possible, by assuming $\mathrm{X}^{\prime \prime}=\frac{m x}{a}$, and $\mathrm{Y}^{\prime \prime}=\frac{m y}{b}$; m being any fixed number which the question may require.
Since therefore $\mathrm{X}^{\prime \prime}=\frac{m x}{a}$, we have $\mathrm{X}^{\prime \prime} \dot{x}=\dot{\mathrm{X}}^{\prime}=\frac{m x \dot{x}}{a}$, and tak. ing the fluent, we have $\mathrm{X}^{\prime}=a^{\prime}+\frac{m x^{2}}{2 a}$.

The constant quantity a^{\prime} being either absolute, or some function of the distance a.

We have discovered therefore, that the logarithm of the probability that the ertor x happens in the distance a is expressed by $a^{\prime}+\frac{m x^{2}}{2 a}=\mathrm{X}^{\prime}$, and consequently the probability itself is

$$
\mathrm{X}_{\mathrm{a}} \mathrm{X}^{\mathrm{X}}=c^{\prime}\left(a^{\prime}+\frac{m x^{2}}{2 a}\right)
$$

Such is the formula by which the probabilities of different errors may be compared, when the values of the determinate quantities e, a^{\prime}, and m are properly adjusted. If this probability of the error x be denoted by w the ordmate of a curve to the $a b-$
 tion of the curve of frobadity.

F. Galton

"I know scarcely anything so apt to impress the imagination as the wonderful form of cosmic order expresses by the "Law of Frequency of Error". The law would have been personified by the Greeks and deified, if they had know of it, ..., The larger the mob and the greater the apparent anarchy, the more perfect its sway."
(~1889)

The First Poisson Process

Horse Kicking as Bernoulli Trials (1894)

$P_{k}(n)=$ probabilit y of k successes in n trials

$$
=\frac{n!}{(n-k)!k!} p^{k}(1-p)^{n-k}=\frac{n(n-1) \Lambda(n-k+1)}{k!} p^{k}(1-p)^{n-k}
$$

Poisson noted that if

$$
p \rightarrow 0, \quad n \rightarrow \infty, \quad \text { with } \quad n p \rightarrow \lambda
$$

$$
\begin{aligned}
P_{k}(n) & \approx \frac{n^{k} p^{k}}{k!} \exp (-n p) \\
& \approx \frac{\lambda^{k}}{k!} e^{-\lambda}
\end{aligned}
$$

Laplace put the integral into probability

Expressed many problems in the form of picking tickets from an urn with R red and W white tickets, R/W fixed and R and W \rightarrow infinity

Given: Choose tickets
p where white
q where red

What is the probability that that in choosing more tickets that m will be white n will be red

Evaluating these integrals led Laplace to calculate many of the integrals seen in introductory calculus books

Laplace (1749-1827)

Theorie analytique des probabilities
 $1^{\text {st }}$ edition dedicated to Napolean-le-Grand/fidele sujet, Laplace
 $2^{\text {nd }}$ edition, no dedication

Includes

- Generating functions
- Laplace transforms
- Method of steepest descent

$$
\begin{aligned}
& \int_{0}^{\infty} \cos (r x) e^{-a^{2} x^{2}} d x=\frac{\sqrt{\pi}}{2 a} e^{-\frac{r^{2}}{4 a^{2}}} \\
& \int_{0}^{\infty} \frac{\sin (r x)}{x} d x=\frac{\pi}{2} \\
& \int_{0}^{\infty} \frac{\cos (a x)}{1+x^{2}} d x=\frac{\pi}{2} e^{-a}
\end{aligned}
$$

Inaugural faculty at Ecole Polytechnique
Lagrange, Laplace, Monge, Fourier

Louis Bachelier
 Theory of Speculation
 thesis for Docteur Sciences Mathematiques 1900 dedicated to H. Poincare

Introduced the Chapman-Kolmogorov process

$$
\boldsymbol{P}_{z, t+\tau}=\int_{-\infty}^{\infty} \boldsymbol{P}_{x, t} P_{z-x, \tau} d x
$$

$$
c^{2} \frac{\partial P}{\partial t}-\frac{\partial^{2} P}{\partial x^{2}}=0
$$

Discovered the radiation of probability. "Each price x during an element of time radiates towards its neighboring price", but incorrectly uses $\mathrm{c}=\lim (\mathrm{x} / \mathrm{t})$ as both tend to zero. The correct limit when change takes places at a finite velocity should arrive at the telegrapher's equation

One needs to take the limit of small x and small t, such that $D=x^{2} / t=$ constant. This means the x / t does not converge to a limit, i.e., the velocity is not well defined. Bachelier did not perform the limit process correctly and his thesis was not well received.

Bachelier's analysis would work for the telegraphers' equation with constant velocity c , and rate of change λ of direction and diffusion constant $D=c^{2} / \lambda$

The Lognormal Distribution McAlister (1879)

Kolmogorov's (1941) rock crushing
for ore separator

$$
\begin{aligned}
& X_{1}=q_{1} X_{0} \\
& X_{2}=q_{2} X_{1}=q_{2} q_{1} X_{0} \\
& \mathrm{M} \\
& X_{n}=q_{n} \Lambda q_{1} X_{0} \\
& X_{n-1}-X_{n}=q_{n-1} \Lambda q_{1}\left(1-q_{n}\right) X_{0}=\left(1-q_{n}\right) X_{n-1} \\
& \sum_{n=1}^{N} \frac{X_{n-1}-X_{n}}{X_{n}} \rightarrow \int_{X_{N}}^{X_{0}} \frac{d x}{x}=\ln \left(\frac{X_{0}}{X_{N}}\right)=\sum_{n=1}^{N}\left(1-q_{n}\right) \\
& f(x) d x=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\left[\log \left(\frac{x}{\langle x\rangle}\right)\right]^{2} / 2 \sigma^{2}\right)
\end{aligned}
$$

The RHS is a sum of random variable and for large N it has a Gaussian distribution. If $\operatorname{In}\left(X_{N}\right)$ is normal, then X_{N} is lognormal

Shockley criteria for bonuses at Bell Labs

Figure 44 Cumulative distribution of logarithm of "weighted"/ rate of publication at Brookhaven National Lab. plotted on probability paper, ${ }^{5}$

Product of factors to publish, so judge success according to the logarithm of number of publications

Condorcet
Laplace
Poisson
Poisson (1837) Recherches sur la probabilite des jugements en matiere criminelle et en matiere civile
(book rejected by his peers, era of the philosophe was over)

St. Petersburg
Chebyshev (Ph. D 1849) Theory of Probability (1846)
Students: Markov (Ischislenie Veroyatnostei) (1900)
Lyapunov (limit theorems/characteristic functions)
A. A. Markov, An example of statistical investigation of the text Eugene Onegin concerning the connection of samples in chains (1913)

J. Bertrand's Paradox (1888)

What is the probability that a randomly drawn chord, in a circle, will be longer than the side of an inscribed equilateral triangle?
Answer depends on the assumption of what random variable (angle, area, length, ... is uniformly distributed.

- Measured along circumference $p=1 / 3$ (choose points on circumference)
- Measured if mid-point of chord falls inside of inscribed circle $p=1 / 4$ (choose midpoint)

A DIFFERENT APPROACH

Method of choosing a random point leads to a probability of $1 / 4$ for chord to be larger than side of the triangle

Green circle has $1 / 4$ the area of the large circle

If the randomly chosen point lies outside the green circle the chord will be shorter than the side of the triangle.
If the point is inside the green circle the chord will be longer than the side of the triangle.

St. Petersberg Paradox

(a Nicholas Bernoulli problem in Montmort's book)
Flip a coin until a head (H) appears

Possible sequences	$\mathrm{P}(\mathrm{W})$	W(winnings)
H	1/2	1
TH	$1 / 4$	2
TTH	1/8	4
$\underset{(N \text { taiss }}{\mathrm{T}_{\mathrm{TH}}}$	12^{2}	${ }^{\text {N }}$
$\begin{aligned}\langle W\rangle=\Sigma W p(W) & =1 \times 1 / 2+2 \times 1 / 4+4 \times 1 / 8+\cdots \\ & =1 / 2+1 / 2+1 / 2+\cdots\end{aligned}$		

What is the fair ante? Finite or infinite?
This problem is discussed by Daniel Bernoulli in the Commentarii of the St. Petersburg Academy in the 1720's

Levy Flights

Random walks with infinite variance (scale invariance)

$$
\begin{aligned}
& p(x)=\frac{n-1}{2 n} \sum_{j=0}^{\infty} n^{-j}\left(\delta_{x, b^{j}}+\delta_{x, b^{-j}}\right) \\
& \left.\widetilde{p}(k)=\int_{-\infty}^{\infty} e^{i k x} p(x) d x=\frac{n-1}{n} \sum_{j=0}^{\infty} n^{-j} \cos \left(b^{j} k\right)=\frac{1}{2 \pi i} \oint \Gamma(s) \cos \left(\frac{\pi s}{2}\right) b^{-j s} k\right) \longrightarrow \widetilde{p}(k)=\frac{1}{2 \pi i}\left(\frac{n-1}{n}\right) \sum_{j=0}^{\infty} \oint \Gamma(s) \cos \left(\frac{\pi s}{2}\right) b^{-j s}|k|^{-s} n^{-j} d s \\
& \left\langle x^{2}\right\rangle=\sum_{j=0}^{\infty} x^{2} p(x)=\infty \text { if } b^{2}>n \\
& \widetilde{p}(k)=\frac{1}{2 \pi i} \oint \frac{|k|^{-s} \Gamma(s) \cos (\pi s / 2)}{1-n^{-1} b^{-s}} \mathrm{ds}
\end{aligned}
$$

the integrand has simple poles at $\mathrm{s}=0,-2,-4, \Lambda$ and at $\mathrm{s}=-\frac{\ln n}{\ln b} \pm 2 \pi i m / \ln b, m=0,1,2, \Lambda$

$$
\lim _{k \rightarrow 0} \widetilde{p}(k)=1-|k|^{\beta} Q(k)+O\left(k^{2}\right) \approx \exp \left(-|k|^{\beta}\right)
$$

where Q is periodic in $\ln k$ with period $\ln b$

$$
\beta=\frac{\ln n}{\ln b}<1
$$

Random process Nonlinear dynamical process
Both cases exhibit fractal structure

