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Classical systems

Classical system described by the Hamiltonian:
2
Pj ) )
H = H(x,p) = E o2m; + § U(xi) + E V(xi, xk)

In thermodynamic equilibrium of temperature T and for Gibbs states

P(x,p) ~ e H/keT (kg - Boltzmann constant) the averaged kinetic energy
per one degree of freedom is:

Eom o} = [ a0 [ ax exp{ H(x.p)/ks T}

Integration yields:

1
E=o <PJ> *kBT

Ej does not depend on U(x;) and V/(x;, xx) !!
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Quantum systems: harmonic oscillator

o ’i mw3x?
2m 2
In thermodynamic equilibrium (density operator p ~ e~ H/k8T):
Exlwo) = 5 (P7) = 7 coth o

&y depends on the potential via wqp!!

In the limit wg — 0 corresponding to a free particle:
1
Ex==-kgT
k= 5kB

the same as in the classical case
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Quantum Brownian particle

Hamiltonian of the System (Brownian particle) + Environment

(thermostat):
2 2
p m,w G
o T UG+ E ’ = X
) <q m,w,-2 > ]

From Heisenberg equations: Generalized Langevin Equation

Mx(t) + /0 "t = $)i(s) ds = —U'(x(t)) — 1(£)x(0) + F(1)

2

5 cosfw;(t — s)]

m;ws
pi(0)

F(t) = Z Ci [q,-(O) cos(wit) + n:lw- sin(wjt)

v(t—S)ZZ

]

- Wi
i
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Initial state of the total system

Initial state of the total system: p(0) = ps ® pg, where ps is an arbitrary
state of the Brownian particle and pg is an equilibrium canonical state of
the environment (thermostat) of temperature T,

pe = exp(—Hg/kg T)/Trlexp(—Hg / ks T)]

where:

is the Hamiltonian of the thermostat. Random force:

F(t) = Z G [q,- cos(wit) + m’j;i sin(w,-t)]
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Statistics of Gaussian random force F(t)

F(t) = Z G [q,- cos(wit) + mf;i sin(w,-t)]

Its mean value is zero,
(F(t)) = Tr[F(t)pr] =0
and the symmetrized correlation function:
1
C(t1, t2) = S (F(t))F(t2) + F(t2) F(t1))

takes the form:

hCiz hw,-
C(tl, t2) = C(tl — t2) = Z T coth ke T cos[w,-(tl — tz)]
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Spectral function J(w)

2

Wt=5) =Y pipcosli(t = s)l, J(w) = ¥ 7l — )

Damping kernel:

’Y(T)Z/ de(w)cosz:/ dw 4(w) coswt
0 0

Correlation function:

< hw hw o
C(T)—/O dw7coth <2kBT> J(w)cosouT—/0 dw C(w) coswTt
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Mx(t) + /Ot'y(t —s)x(s) ds = —y(t)x(0) + F(t)

Momentum of Brownian particle

ple) + 15 | (e = 5)p(6) ds = —(x(0) + F()

Solution via the response function R(t):

plt) = R()P(0) - [ " du R(t — u)y(u)x(0) + / t

du R(t — u)n(u).
Its Laplace transform:



Partition energy theorem for a free Brownian particle

E = lim = (p(t)) = /0 " dw E4(w) P(w)

t—oo 2

Ey - mean kinetic energy of Brownian particle

E = % coth (%) - mean thermal kinetic energy of thermostat

oscillator of eigenfrequency w

P(w) - probability distribution of thermostat oscillators frequencies:

P(w) = % [RL(/W) v feL(—iw)} - % /OOO dt R(t) cos(wt)

P) 20, [FP)dw=1 Ri(z)= il
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Drude model of dissipation
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Figure : Drude model vp(t) = (y0/27.)e~ /™. Probability distributions Pp(x)
and Pp(y) in two different scalings for selected values of the dimensionless
parameter & = 7, /7c. In the left panel 7. is fixed and 7, = M/, is changed. In
the right panel 7, is fixed and 7. is changed.
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Debye model of dissipation
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Figure : Ps(x) for the oscillatory decay vs(t) = % (the Debye type
model) and selected oo = 7, /7¢. In the left panel 7. is fixed and 7, = M/~ is
changed. In the right panel 7, is fixed and 7. is changed.
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Figure : Panel (a): The normalized memory functions ~v(t)/4o representing
various dissipation mechanisms. Panel (b): The dimensionless kinetic energy

Eyx = 7cEx/R vs. dimensionless temperature T = 7.kg T /h and various forms of
(1)




Selected regimes

1. High temperature regime: Ey = %kBT
2. Low temperature regime (fluctuations of vacuum at T =0) :

h

Bo=g [ duhoP) =

3. The first correction for small temperature T >0

E(T) = ;/OOO dw hw P(w) exp [—k?,_]

4. For Drude model, when 7. >> h/kgT,

1 hQ Yo
E, = ~hQ coth Q2 —
k= gheeo <2kBT>’ M.
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Conclusions

1. The mean kinetic energy E, of the Brownian particle equals the
thermally-averaged kinetic energy £, per one degree of freedom of
thermostat oscillators, additionally averaged over randomly-distributed
oscillator frequencies.

00
Ek = <5k> = / Ek(w) P(w) dw — %kBT for T —
0

2. The mean kinetic energy depends on "everything” : the
system-thermostat coupling strength and dissipation mechanism
(correlation time of thermal noise )

3. At zero temperature, T = 0, the mean kinetic energy is non-zero

Contact: jerzy.luczka®us.edu.pl
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