On the principle of equipartition of kinetic energy: classical versus quantum

Jerzy Łuczka Institute of Physics, University of Silesia Katowice - Chorzów, Poland

Collaboration: Paweł Bialas (PhD) and Jakub Spiechowicz

Outline

- 1 Equipartition of energy in classical systems
- 2 Quantum systems: harmonic oscillator in Gibbs canonical state
- Quantum Brownian particle
- 4 Fluctuation-dissipation relation
- 5 Partition energy theorem for a free quantum Brownian particle
- 6 Conclusions

JL

Classical systems

Classical system described by the Hamiltonian:

$$H = H(\mathbf{x}, \mathbf{p}) = \sum_{i} \frac{p_i^2}{2m_i} + \sum_{i} U(x_i) + \sum_{i,k} V(x_i, x_k)$$

In thermodynamic equilibrium of temperature T and for Gibbs states $P(\mathbf{x},\mathbf{p})\sim e^{-H/k_BT}$ (k_B - Boltzmann constant) the averaged kinetic energy per one degree of freedom is:

$$E_k = \frac{1}{2m_j} \langle p_j^2 \rangle = \int_{-\infty}^{\infty} \mathbf{dp} \int_{-\infty}^{\infty} \mathbf{dx} \; \frac{p_j^2}{2m_j} \; exp\{-H(\mathbf{x}, \mathbf{p})/k_B T\}$$

Integration yields:

$$E_k = rac{1}{2m_j} \langle p_j^2
angle = rac{1}{2} k_B T$$

 E_k does not depend on $U(x_i)$ and $V(x_i, x_k)$!!

Quantum systems: harmonic oscillator

$$H = \frac{p^2}{2m} + \frac{m\omega_0^2 x^2}{2}$$

In thermodynamic equilibrium (density operator $\rho \sim e^{-H/k_BT}$):

$$\mathcal{E}_k(\omega_0) = rac{1}{2m} \langle p^2
angle = rac{\hbar \omega_0}{4} \coth rac{\hbar \omega_0}{2k_B T}$$

 \mathcal{E}_k depends on the potential via $\omega_0!!$

In the limit $\omega_0 \to 0$ corresponding to a free particle:

$$\mathcal{E}_k = \frac{1}{2} k_B T$$

the same as in the classical case

Quantum Brownian particle

Hamiltonian of the System (Brownian particle) + Environment (thermostat):

$$H = \frac{p^{2}}{2M} + U(x) + \sum_{i} \left[\frac{p_{i}^{2}}{2m_{i}} + \frac{m_{i}\omega_{i}^{2}}{2} \left(q_{i} - \frac{c_{i}}{m_{i}\omega_{i}^{2}} x \right)^{2} \right]$$

From Heisenberg equations: Generalized Langevin Equation

$$M\ddot{x}(t) + \int_0^t \gamma(t-s)\dot{x}(s)\,ds = -U'(x(t)) - \gamma(t)x(0) + F(t)$$

$$\gamma(t-s) = \sum_{i} \frac{c_i^2}{m_i \omega_i^2} \cos[\omega_i(t-s)]$$

$$F(t) = \sum_{i} c_i \left[q_i(0) \cos(\omega_i t) + \frac{p_i(0)}{m_i \omega_i} \sin(\omega_i t) \right]$$

◆□▶◆□▶◆■▶◆■▶ ● からで

Initial state of the total system

Initial state of the total system: $\rho(0) = \rho_S \otimes \rho_E$, where ρ_S is an arbitrary state of the Brownian particle and ρ_E is an equilibrium canonical state of the environment (thermostat) of temperature T,

$$\rho_E = \exp(-H_E/k_BT)/\text{Tr}[\exp(-H_E/k_BT)]$$

where:

$$H_E = \sum_i \left[\frac{p_i^2}{2m_i} + \frac{1}{2} m_i \omega_i^2 q_i^2 \right]$$

is the Hamiltonian of the thermostat. Random force:

$$F(t) = \sum_{i} c_{i} \left[q_{i} \cos(\omega_{i} t) + \frac{p_{i}}{m_{i} \omega_{i}} \sin(\omega_{i} t) \right]$$

Statistics of Gaussian random force F(t)

$$F(t) = \sum_{i} c_{i} \left[q_{i} \cos(\omega_{i} t) + \frac{p_{i}}{m_{i} \omega_{i}} \sin(\omega_{i} t) \right]$$

Its mean value is zero,

$$\langle F(t) \rangle \equiv \operatorname{Tr} \left[F(t) \rho_T \right] = 0$$

and the symmetrized correlation function:

$$C(t_1, t_2) = \frac{1}{2} \langle F(t_1) F(t_2) + F(t_2) F(t_1) \rangle$$

takes the form:

$$C(t_1,t_2)=C(t_1-t_2)=\sum_i rac{\hbar c_i^2}{2m_i\omega_i}\coth\left(rac{\hbar\omega_i}{2k_BT}
ight)\cos[\omega_i(t_1-t_2)]$$

◆ロト ◆部ト ◆草ト ◆草ト ■ めので

Spectral function $J(\omega)$

$$\gamma(t-s) = \sum_{i} \frac{c_i^2}{m_i \omega_i^2} \cos[\omega_i(t-s)], \quad J(\omega) = \sum_{i} \frac{c_i^2}{m_i \omega_i^2} \delta(\omega - \omega_i)$$

Damping kernel:

$$\gamma(\tau) = \int_0^\infty d\omega J(\omega) \cos \omega \tau = \int_0^\infty d\omega \, \hat{\gamma}(\omega) \cos \omega \tau$$

Correlation function:

$$C(\tau) = \int_0^\infty d\omega \, \frac{\hbar\omega}{2} \coth\left(\frac{\hbar\omega}{2k_BT}\right) J(\omega) \cos\omega\tau = \int_0^\infty d\omega \, \hat{C}(\omega) \cos\omega\tau$$

Fluctuation-dissipation relation

$$\hat{C}(\omega) = \frac{\hbar\omega}{2} \coth\left(\frac{\hbar\omega}{2k_BT}\right) \hat{\gamma}(\omega)$$

◆ロト ◆団 ▶ ◆ 恵 ▶ ◆ 恵 ▶ りへ○・

8 / 15

JL

$$M\ddot{x}(t) + \int_0^t \gamma(t-s)\dot{x}(s)\,ds = -\gamma(t)x(0) + F(t)$$

Momentum of Brownian particle

$$\dot{p}(t) + \frac{1}{M} \int_0^t \gamma(t-s)p(s) ds = -\gamma(t)x(0) + F(t)$$

Solution via the response function R(t):

$$p(t) = R(t)p(0) - \int_0^t du \ R(t-u)\gamma(u)x(0) + \int_0^t du \ R(t-u)\eta(u).$$

Its Laplace transform:

$$\hat{R}_L(z) = \int_0^\infty dt \; \mathrm{e}^{-zt} R(t) = rac{M}{Mz + \hat{\gamma}_L(z)}$$

Partition energy theorem for a free Brownian particle

$$E_k = \lim_{t \to \infty} \frac{1}{2M} \langle p^2(t) \rangle = \int_0^\infty d\omega \ \mathcal{E}_k(\omega) \ \mathbb{P}(\omega)$$

 E_k - mean kinetic energy of Brownian particle

 $\mathcal{E}_k = \frac{\hbar \omega}{4} \, \coth \left(\frac{\hbar \omega}{2 k_B T} \right)$ - mean thermal kinetic energy of thermostat oscillator of eigenfrequency ω

 $\mathbb{P}(\omega)$ - probability distribution of thermostat oscillators frequencies:

$$\mathbb{P}(\omega) = \frac{1}{\pi} \left[\hat{R}_L(i\omega) + \hat{R}_L(-i\omega) \right] = \frac{2}{\pi} \int_0^\infty dt \, R(t) \cos(\omega t)$$

$$\mathbb{P}(\omega) \geq 0, \qquad \int_0^\infty \mathbb{P}(\omega) d\omega = 1, \quad \hat{R}_L(z) = \frac{M}{Mz + \hat{\gamma}_L(z)}$$

(□) (□) (□) (□) (□) (□) (□)

Drude model of dissipation

Figure : Drude model $\gamma_D(t)=(\gamma_0/2\tau_c)e^{-t/\tau_c}$. Probability distributions $\mathbb{P}_D(x)$ and $\tilde{\mathbb{P}}_D(y)$ in two different scalings for selected values of the dimensionless parameter $\alpha=\tau_v/\tau_c$. In the left panel τ_c is fixed and $\tau_v=M/\gamma_0$ is changed. In the right panel τ_v is fixed and τ_c is changed.

11 / 15

Debye model of dissipation

Figure : $\mathbb{P}_S(x)$ for the oscillatory decay $\gamma_S(t) = \frac{\gamma_0 \sin(t/\tau_c)}{\pi t}$ (the Debye type model) and selected $\alpha = \tau_v/\tau_c$. In the left panel τ_c is fixed and $\tau_v = M/\gamma_0$ is changed. In the right panel τ_v is fixed and τ_c is changed.

Figure : Panel (a): The normalized memory functions $\gamma(t)/\tilde{\gamma}_0$ representing various dissipation mechanisms. Panel (b): The dimensionless kinetic energy $\tilde{E}_k = \tau_c E_k/\hbar$ vs. dimensionless temperature $\tilde{T} = \tau_c k_B T/\hbar$ and various forms of $\gamma(t)$.

13 / 15

Selected regimes

- 1. High temperature regime: $E_k = \frac{1}{2}k_BT$
- 2. Low temperature regime (fluctuations of vacuum at T=0):

$$E_0 = rac{1}{4} \int_0^\infty d\omega \; \hbar\omega \, \mathbb{P}(\omega) = rac{\hbar}{4} \left\langle \xi
ight
angle$$

3. The first correction for small temperature T>0

$$E_1(T) = rac{1}{2} \int_0^\infty d\omega \ \hbar\omega \, \mathbb{P}(\omega) \exp\left[-rac{\hbar\omega}{k_B T}
ight]$$

4. For Drude model, when $\tau_c >> \hbar/k_BT$,

$$E_k = rac{1}{4}\hbar\Omega \coth\left(rac{\hbar\Omega}{2k_BT}
ight), \quad \Omega^2 = rac{\gamma_0}{M au_c}$$

Conclusions

1. The mean kinetic energy E_k of the Brownian particle equals the thermally-averaged kinetic energy \mathcal{E}_k per one degree of freedom of thermostat oscillators, additionally averaged over randomly-distributed oscillator frequencies.

$$E_k = \langle \mathcal{E}_k \rangle = \int_0^\infty \, \mathcal{E}_k(\omega) \, \mathbb{P}(\omega) \, d\omega \to \frac{1}{2} k_B T \quad \text{for} \quad T \to \infty$$

- 2. The mean kinetic energy depends on "everything": the system-thermostat coupling strength and dissipation mechanism (correlation time of thermal noise)
- 3. At zero temperature, T=0, the mean kinetic energy is non-zero

Contact: jerzy.luczka@us.edu.pl

JI