

Aalto-yliopisto Perustieteiden korkeakoulu

Quantum vacuum, noise, and entanglement

Pertti Hakonen Gdansk, July 10, 2018

OUTLINE

Introduction

- Concept of vacuum
- Mode correlations in quantum optics
- Entanglement

Dynamical Casimir effect

- Photon generation with a Josephson metamaterial
- Correlations: two mode squeezing

Vacuum fluctuations under double parametric pumping

- New kind of correlations
- Which color information

Relativity and quantum noise

- Past – future correlations from 4-dim spacetime

Summary of open problems

Introductory remarks

• **Toricellian vacuum** (Evangelista Toricelli, 1643)

• First vacuum pump, Magdeburg hemispheres (Otto von Guericke, 1654)

Modern view of vacuum

- = quantum-mechanical ground state of a field
 - Higgs vacuum
 - BEC vacuum
 - virtual particles, fluctuations

Effects related to vacuum:

- spontaneous emission
- Lamb shift
- static Casimir effect

Vacuum fluctuations: Casimir force

"Two ships should not be moored too close together because they are attracted one towards the other by a certain force of attraction."

The Album of the Mariner P. C. Caussée,1836

Nature, doi:10.1038/news060501-7

Measured by S. K. Lamoreaux in 1997

Aalto University

Exciting the vacuum

How to get something out of vacuum:

- use strong electric fields [Schwinger effect]
- change fast a boundary condition or the speed of light [dynamical Casimir effect]
- use a strong gravitational field [Hawking effect]
- accelerate the system [Unruh effect]

- Entanglement of virtual particles
 Entanglement transfer to qubits
- Past-future correlations

"Mode" observables: Quadratures

Quadrature operators (like x and p):

$$H_{\mathbf{k}} = \hbar \omega_{\mathbf{k}} (a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}} + \frac{1}{2}))$$

$$\begin{split} X_1 &= \frac{1}{\sqrt{2}} \left(a^{\dagger} + a \right) \\ X_2 &= \frac{i}{\sqrt{2}} \left(a^{\dagger} - a \right) \end{split} \qquad \qquad X_{\theta} &= \frac{1}{\sqrt{2}} \left(a e^{-i\theta} + a^{\dagger} e^{i\theta} \right) \end{split}$$

Since $\begin{bmatrix} X_1, X_2 \end{bmatrix} = i$, there must be an uncertainty relation

 $\Delta X_1 \Delta X_2 \ge \frac{1}{2}$

Correlation of quadratures can be manipulated

Single mode squeezing

Squeezing operator

$$S = \exp\left(\frac{1}{2}\xi a^{\dagger 2} - \frac{1}{2}\xi^* a^2\right) \qquad \qquad \xi = re^{i\theta} \quad |\xi\rangle = S$$

 $|0\rangle$

Two-mode squeezing

Two mode squeezing operator

$$S_2 = \exp(\xi^* ab - \xi a^{\dagger} b^{\dagger}) \qquad \xi = r e^{i\theta}$$

$$\langle ab \rangle = \cosh r \sinh r e^{i\theta} \qquad \langle ab^{\dagger} \rangle = 0$$

Maps to single mode case by defining operator

$$d = \frac{1}{\sqrt{2}} (a+b) \quad \left[d, d^{\dagger} \right] = 1$$

$$X_{\theta}^{d} = \frac{1}{\sqrt{2}} \left(de^{-i\theta} + d^{\dagger}e^{i\theta} \right) \left\langle \Delta X_{1}^{d^{2}} \right\rangle = \frac{1}{2} e^{2r} \left\langle \Delta X_{2}^{d^{2}} \right\rangle = \frac{1}{2} e^{-2r}$$

Entanglement

SQUID: A NONLINEAR *L*

Analogy of dynamic Casimir effect (DCE)

- E. Yablonovitch, PRL 1989
- V. Dodonov, PRA 1993

- J. Johansson et al., PRL 2009, PRA 2010
- C. Wilson et al., Nature 2011
- P. Lähteenmäki et al., arXiv 2011

Semiclassical theory

$$H = \hbar \omega_{res} a^{\dagger} a + \frac{\hbar}{2i} \sum_{p=1,2} \left[\alpha_{p}^{*} e^{i\omega_{p}t} - \alpha_{p} e^{-i\omega_{p}t} \right] \left(a + a^{\dagger} \right)^{2}$$

$$a(t) = \tilde{a}(t) \exp[-\omega_{res}t]$$

$$\Delta_{p} = \omega_{p}/2 - \omega_{res}$$

$$a = \sum_{p=1,2} \alpha_{p} e^{-2i\Delta_{p}t} \tilde{a}^{\dagger} - \frac{\kappa}{2} \tilde{a} - \sqrt{\kappa} \tilde{a}_{in}$$

$$a_{out} = \sum_{p=1,2} \alpha_{p} e^{-2i\Delta_{p}t} \tilde{a}^{\dagger} - \frac{\kappa}{2} \tilde{a} - \sqrt{\kappa} \tilde{a}_{in}$$

Measurements at large detunings

Lähteenmäki, P., Paraoanu, G. S., Hassel, J. & Hakonen, P. J. Proc. Natl. Acad. Sci. **110**, 4234–4238 (2013).

Intrinsic spectrum of DCE

Vacuum fluctuations under double parametric pumping

Lähteenmäki, P., Paraoanu, G., Hassel, J. & Hakonen, P. J., Nature Commun. 7 (2016). http://dx.doi.org/10.1038/ncomms12548

Lumped element parametric device

Experimental setup

- Vector signal analyzer

- Quadrature components digitized at 50 MHz rate

- Digital band filtering and correlations with FFT

Gain and Noise Performance

□ JPA noise using SNR improvement

- Vertical lines: 3 dB bandwidth
- Dashed line: quantum limit
- Shaded area: measurement error

T. Elo, et al. 2018

- □ 100 MHz bandwidth
- □ Approching quantum limit

$$T_{QN} = \frac{\hbar\omega}{k_h}$$

Observation of quantum squeezing indicates low losses

Correlations in a two pump configuration

Bright and dark modes

- Coherence due to the same quantum fluctuation taking part in the generation of the pairs

Noise power measurements (low power)

Mode correlators

Lähteenmäki, P., Paraoanu, G. S., Hassel, J. & Hakonen, P. J., Nature Communications **7** (2016). <u>http://dx.doi.org/10.1038/ncomms12548</u>

Which path - which color information

In our case: two **slits open when two pumps are on** – the system does not know from which pump the photon came

- Our which path is in frequency space
- Information can be obtained by varying pumps in time

P. Bertet, S. Osnaghi, A. Rauschenbeutel, G. Nogues, A. Auffeves, M. Brune, J. M. Raimond & S. Haroche, Nature **411**, 166 (2001)

Pulsed pumps with tuned overlap

Vacuum induced coherence: open questions

- 1) Correlations with increased separation *L* of the loops
- 2) Past future correlations/The Unruh effect

The vacuum and relativity

Minkowski metric

$$(\Delta s)^{2} = (\Delta ct)^{2} - (\Delta x)^{2} - (\Delta y)^{2} - (\Delta z)^{2}$$

- The past light cone contains all the events that could have a causal influence on O

H. Minkowski

Non-local correlations via quantum vacuum*

Also **past-future correlations**

Closely related to the **Unruh effect**

*A. Valentini, Phys. Lett. A **153**, 321 (1991) *B. Reznik, et al., Phys. Rev. A **71**, 042104 (2005)

The vacuum and the equivalence principle

The Unruh effect:

- An accelerating observer will observe **blackbody radiation** where an inertial observer would observe none.

- The uniformly accelerating observer is out of causal contact with part of space time (having both positive and negative *f*)

$$k_{B}T_{U} = \frac{\hbar a}{2\pi c}$$

How to observe?

$$T_U = 1.2 \times 10^{-19} K \quad a = 10 m/s^2$$

S. Fulling 1973, P. Davies 1975, and W. G. Unruh 1976

Past-Future Vacuum Correlations in Circuit QED

C. Sabin, et al. PRL 109, 033602 (2012)

Aalto University

Circuit QED

Past-Future Vacuum Correlations in Circuit QED

C. Sabin, et al. PRL 109, 033602 (2012)

Gravitational effects and its analogs

The Hawking effect

(1974)

$$k_B T_H = \frac{\hbar g_h}{2\pi c} \qquad g_h = \frac{c^4}{4GM}$$

Estimate:

For a black hole with M = the solar mass $T_H = 10^{-7} K$... but the c.m.b. is at 2.7 K

Sonic analog of black holes

In Bose-Einstein condensates:

Observation of quantum Hawking radiation and its entanglement in an analogue black hole

<u>J. Steinhauer</u> *Nature Phys.* **12**, 959 (2016)

Analog cosmological effects in SQUID arrays

frequency (ω)

106, 021302 (2011)

Entanglement as a resource: quantum radar

- Quantum correlations (entanglement) shared by transmitted and idler radiation
- Receiver distills the correlations from the incoming radiation
- Particularly useful in extremely lossy and noisy situations.

Application: detection of stealth aircrafts "r

"China's latest quantum radar won't just track stealth bombers, but ballistic missiles in space too"

Pasi Lähteenmäki

Teemu Elo

welcome to the European Microkelvin Collaboration

ACADEMY OF FINLAND

Sorin Paraoanu

Juha Hassel

Open problems summary

1) Casimir photon generation

- time dependent phenomena
- parabolic spectrum

2) Hawking radiation

- analog using electronic circuits
- blackbody spectrum

3) Past – future correlations

- entanglement transfer of quantum vacuum
- sub-nanosecond, low noise measurements

4) Quantum radar

- how to use entanglement to improve SNR

"Mode" observables: Quadratures

Quadrature operators (like x and p):

$$H_{\mathbf{k}} = \hbar \omega_{\mathbf{k}} (a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}} + \frac{1}{2}))$$

$$\begin{split} X_1 &= \frac{1}{\sqrt{2}} \left(a^{\dagger} + a \right) \\ X_2 &= \frac{i}{\sqrt{2}} \left(a^{\dagger} - a \right) \end{split} \qquad \qquad X_{\theta} &= \frac{1}{\sqrt{2}} \left(a e^{-i\theta} + a^{\dagger} e^{i\theta} \right) \end{split}$$

Since $\begin{bmatrix} X_1, X_2 \end{bmatrix} = i$, there must be an uncertainty relation

 $\Delta X_1 \Delta X_2 \ge \frac{1}{2}$

Correlation of quadratures can be manipulated

Basic quantities

Mode correlators I

Field quantization

$$\nabla^{2}\mathbf{A} = \frac{1}{c^{2}}\frac{\partial^{2}\mathbf{A}}{\partial t^{2}} \quad \mathbf{A}(\mathbf{r},t) = \sum_{\mathbf{k}}\mathbf{A}_{\mathbf{k}}e^{i\omega_{\mathbf{k}}t + i\mathbf{k}\cdot\mathbf{r}} + \mathbf{A}_{\mathbf{k}}^{*}e^{i\omega_{\mathbf{k}}t - i\mathbf{k}\cdot\mathbf{r}}$$

The energy stored in an EM field

$$H = \frac{1}{2} \int_{V} dV (\epsilon_0 \mathbf{E}^2 + \mu_0^{-1} \mathbf{B}^2)$$

Energy for a single mode

$$H_{\mathbf{k}} = 2\epsilon_0 V \omega_{\mathbf{k}}^2 \mathbf{A}_{\mathbf{k}} \cdot \mathbf{A}_{\mathbf{k}}^*$$

Rewriting A in terms of quadratures

$$A_{k} = \frac{1}{\sqrt{4\epsilon_{0}V\omega_{k}^{2}}}(\omega_{k}X_{k} + iP_{k})\hat{\varepsilon}_{k} \implies H_{k} = \frac{1}{2}(P_{k}^{2} + \omega_{k}^{2}X_{k}^{2})$$
$$H_{k} = \hbar\omega_{k}(a_{k}^{\dagger}a_{k} + \frac{1}{2}))$$

Measurements of quadrature correlations

Nonseparability (entangled state):

$$\sigma(x_+, x_+) - \sigma(x_+, x_-) \le 1/4$$

Vacuum induced coherence

JPA Design

Lumped element design

- Interdigital capacitor (drawn green)
 - Placed between bonding pads
 - Capacitance 1.2 pF
 - \circ Area 300 × 330 μ m²
- SQUID with 1.2 µA critical current
 - Josephson inductance ($\Phi = 0$): 275 pH
- Fluxline for DC and RF
 - Pump at double the signal frequency

- Low resonator impedance requires high critical current
 - Al/AlOx/Al junctions preferred
- Large junction area (~9 µm²)

JPA Fabrication

Common technique with a suspended bridge **limits** junction size

Junctions utilizing aluminum shadow evaporation **without** a suspended bridge

[F. Lecocq et al. Nanotechnology, 22, 315302 (2011).]

	1	IL	a	
				b
<u>1 μm</u>			ր C	

Double layer resist and using 100 kV e-beam lithography (reduce parasitic undercuts) with high and low doses

The device is fabricated in one lithography step

High dose Small dose

JJs, bonding pads, capacitors, fluxlines etc.

Results – JPA Performance

Maximum gain vs. pump frequency and power

$$\circ \quad f_{\text{pump}} = 2 \times f_{\text{signal}}$$

- □ Tunable gain at single DC flux point
 - \circ I = 0.8 mA
- □ Additional tunability from DC flux
 - Center frequency: 5 5.5 GHz

□ Operating point example:

- \circ ~20 dB gain
- o 100 MHz bandwidth
 - vertical lines
- 1 dB compression at -125 dBm

Rindler coordinates

$$t = \frac{1}{\alpha} \operatorname{artanh}\left(\frac{T}{X}\right), \quad x = \sqrt{X^2 - T^2}, \quad y = Y, \quad z = Z$$

 $T = x \sinh(\alpha t), \quad X = x \cosh(\alpha t), \quad Y = y, \quad Z = z$

$$t = \frac{c}{\alpha} \operatorname{artanh}\left(\frac{cT}{X}\right), \quad x = \sqrt{X^2 - (cT)^2}$$
$$T = \frac{x}{c} \sinh\left(\frac{\alpha t}{c}\right), \quad X = x \cosh\left(\frac{\alpha t}{c}\right)$$

Acknowledgements

Pasi Lähteenmäki

Sorin Paraoanu

Juha Hassel

Teemu Elo

Thanniyil Abhilash Mikhail Perelshtein

SEVENTH FRAMEWORK PROGRAMME

welcome to the European Microkelvin Collaboration

Higher order correlations

Noise power measurements (low & high power)

Phase of the dark and bright states

 $\tilde{b}[\xi] = \left\{ e^{-i\varphi_1} \cos\theta \,\tilde{a}[2\Delta_1 - \xi] + e^{-i\varphi_2} \sin\theta \,\tilde{a}[2\Delta_2 - \xi] \right\} / \sqrt{2}$

Pulsed pumps with tuned overlap

Phase of the dark and bright states

 $\mathbf{A}^{\text{P}}_{\text{Asito University}} \qquad \tilde{b}[\xi] = \left\{ e^{-i\varphi_1} \cos\theta \, \tilde{a}[2\Delta_1 - \xi] + e^{-i\varphi_2} \sin\theta \, \tilde{a}[2\Delta_2 - \xi] \right\} / \sqrt{2}$

Classical versus quantum parametric excitation

$$\ddot{x} + \Omega_0^2 \left[1 + g \cos(\Omega_1 t) \right] x + \Gamma_0 \dot{x} = 0$$

- Classical vacuum cannot be parametrically excited.

- Quantum vacuum has inherent zero-point fluctuations, and can be parametrically excited.

Correlators from Input/Output theory

$$\tilde{a}_{\rm out}(\nu) = \left[1 - \frac{\kappa \chi \left(\frac{\omega_d}{2} + \nu\right)}{\mathcal{N}(\nu)}\right] \tilde{a}_{\rm in}(\nu) - \frac{i\alpha\kappa}{\mathcal{N}(\nu)} \chi \left(\frac{\omega_d}{2} + \nu\right) \chi \left(\frac{\omega_d}{2} - \nu\right)^* \tilde{a}_{\rm in}^{\dagger}(\nu)$$

$$\langle \tilde{a}_{\text{out}}^{\dagger}(-\nu) \, \tilde{a}_{\text{out}}(\nu') \rangle = \text{THERM}(\nu) \delta(\nu - \nu') + \text{DCE}(\nu) \delta(\nu - \nu').$$

$$\langle \tilde{a}_{\text{out}}\tilde{a}_{\text{out}}\rangle_{T=0}(\nu) = \frac{i\alpha\kappa\chi\left(\frac{\omega_d}{2}+\nu\right)\chi^*\left(\frac{\omega_d}{2}-\nu\right)}{\mathcal{N}(\nu)} \left[-1 + \frac{\kappa}{\mathcal{N}(-\nu)^*}\chi\left(\frac{\omega_d}{2}-\nu\right)\right]$$

$$\nu = \omega - \omega_d/2$$
 $\Delta = \omega_{\rm res} - \omega_d/2$

Noise spectra with increased pump drive

Dynamical Casimir effect

Data analysis

$$\begin{split} \mathcal{F}[f(t)] &= F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-2\pi i\omega t} dt, \\ F[\omega] &= \sum_{t=0}^{N-1} f[t] \exp\left(\frac{-2\pi i\omega t}{N}\right), \\ (f * g)[n] &= \sum_{m=1}^{k} f^{*}[m]g[m+n] \\ (f * g)[n] &= \sum_{m=1}^{k} f^{*}[m]g[n-m] \\ \overline{g}[m] &= g[k-m] \\ z_{cor}[t] &= \frac{1}{M} IDFT\left[\sum_{k=1}^{M} \frac{1}{N} X_{k}^{*}[f] \cdot Y_{k}[f]\right], \\ z_{cor}[w] &= \frac{1}{M} \left[\sum_{k=1}^{M} \frac{1}{N} X_{k}^{*}[f] \cdot Y_{k}[f]\right], \\ \end{split}$$

Parametric oscillation

Parametric oscillations can be:

- innocuous: e.g. child in a swing
- dangerous: e.g. bridges, container ships
- useful: e.g. low-noise parametric amplifiers

L. Blackwell and K. Kotzebue, Semiconductor-Diode Parametric Amplifiers

The **Botafumeiro** is a famous thurible found in the **Santiago de Compostela Cathedral**..

Conversion matrix for parametric circuits

Aalto University

Correlators from Input/Output theory

$$\tilde{a}_{\rm out}(\nu) = \left[1 - \frac{\kappa \chi \left(\frac{\omega_d}{2} + \nu\right)}{\mathcal{N}(\nu)}\right] \tilde{a}_{\rm in}(\nu) - \frac{i\alpha\kappa}{\mathcal{N}(\nu)} \chi \left(\frac{\omega_d}{2} + \nu\right) \chi \left(\frac{\omega_d}{2} - \nu\right)^* \tilde{a}_{\rm in}^\dagger(\nu)$$

Dynamical Casimir power:

$$\left\langle \tilde{a}_{out}^{\dagger}(-v)\tilde{a}_{out}(v')\right\rangle = \text{DCE}(v)\delta(v-v')$$

Squeezing correlations:

$$\langle \tilde{a}_{\text{out}}\tilde{a}_{\text{out}}\rangle_{T=0}(\nu) = \frac{i\alpha\kappa\chi\left(\frac{\omega_d}{2}+\nu\right)\chi^*\left(\frac{\omega_d}{2}-\nu\right)}{\mathcal{N}(\nu)} \left[-1 + \frac{\kappa}{\mathcal{N}(-\nu)^*}\chi\left(\frac{\omega_d}{2}-\nu\right)\right]$$

From these derive wave equation for the vector potential

$$\nabla^2 \mathbf{A} = \frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2}$$

Spatial mode expansion (exact form depends on boundary conditions)

Field quantization

Promote the classical parameters to operators

$$\begin{split} \mathbf{A}_{\mathbf{k}} &= \frac{1}{\sqrt{4\epsilon_0 V \omega_k^2}} (\omega_k X_{\mathbf{k}} + i P_{\mathbf{k}}) \, \hat{\varepsilon}_{\mathbf{k}} \\ & \rightarrow \frac{1}{\sqrt{4\epsilon_0 V \omega_k^2}} (\omega_k x_{\mathbf{k}} + i p_{\mathbf{k}}) \, \hat{\varepsilon}_{\mathbf{k}} = \sqrt{\frac{\hbar}{2\epsilon_0 V \omega_k}} a_{\mathbf{k}} \hat{\varepsilon}_{\mathbf{k}} \\ \mathbf{A}_{\mathbf{k}}^* &= \frac{1}{\sqrt{4\epsilon_0 V \omega_k^2}} (\omega_k X_{\mathbf{k}} - i P_{\mathbf{k}}) \, \hat{\varepsilon}_{\mathbf{k}} \\ & \rightarrow \frac{1}{\sqrt{4\epsilon_0 V \omega_k^2}} (\omega_k x_{\mathbf{k}} - i p_{\mathbf{k}}) \, \hat{\varepsilon}_{\mathbf{k}} = \sqrt{\frac{\hbar}{2\epsilon_0 V \omega_k}} a_{\mathbf{k}}^{\dagger} \hat{\varepsilon}_{\mathbf{k}} \\ & \rightarrow \frac{1}{\sqrt{4\epsilon_0 V \omega_k^2}} (\omega_k x_{\mathbf{k}} - i p_{\mathbf{k}}) \, \hat{\varepsilon}_{\mathbf{k}} = \sqrt{\frac{\hbar}{2\epsilon_0 V \omega_k}} a_{\mathbf{k}}^{\dagger} \hat{\varepsilon}_{\mathbf{k}} \\ \end{split}$$

$$\begin{aligned} \hat{\mathbf{A}}_{\mathbf{k}} &= \sqrt{\frac{\hbar}{2\epsilon_{0}V\omega_{\mathbf{k}}}} \hat{\varepsilon}_{\mathbf{k}} \left(a_{\mathbf{k}}e^{-i\omega_{k}t+i\mathbf{k}\cdot\mathbf{r}} + a_{\mathbf{k}}^{\dagger}e^{i\omega_{k}t-i\mathbf{k}\cdot\mathbf{r}} \right) \\ \hat{\mathbf{E}}_{\mathbf{k}} &= i\sqrt{\frac{\hbar\omega_{k}}{2\epsilon_{0}V}} \hat{\varepsilon}_{\mathbf{k}} \left(a_{\mathbf{k}}e^{-i\omega_{k}t+i\mathbf{k}\cdot\mathbf{r}} - a_{\mathbf{k}}^{\dagger}e^{i\omega_{k}t-i\mathbf{k}\cdot\mathbf{r}} \right) \\ \hat{\mathbf{B}}_{\mathbf{k}} &= i\sqrt{\frac{\hbar}{2\epsilon_{0}V\omega_{k}}} \mathbf{k} \times \hat{\varepsilon}_{\mathbf{k}} \left(a_{\mathbf{k}}e^{-i\omega_{k}t+i\mathbf{k}\cdot\mathbf{r}} - a_{\mathbf{k}}^{\dagger}e^{i\omega_{k}t-i\mathbf{k}\cdot\mathbf{r}} \right) \end{aligned}$$

And find the energy for each mode

$$H_{\mathbf{k}} = \frac{1}{2} \int_{V} dV (\epsilon_0 \hat{\mathbf{E}}_{\mathbf{k}}^2 + \mu_0^{-1} \hat{\mathbf{B}}_{\mathbf{k}}^2)$$

Which simplifies to

$$H_{\mathbf{k}} = \hbar \omega_{\mathbf{k}} (a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}} + \frac{1}{2})$$

Defined as eigenstates of lowering operator

$$a|\alpha\rangle = \alpha|\alpha\rangle \quad |\alpha\rangle = e^{-|\alpha|^2/2} \sum_n \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

a is not Hermitian so α can be complex

Uncertainties in mode variables:

$$\Delta q = \Delta p = \sqrt{\frac{1}{2}} \qquad \Delta q \Delta p = \frac{1}{2}$$

Min uncertainty, equal between q and p

Two-mode squeezed vacuum

The commutator

$$\begin{bmatrix} q_2, p_2 \end{bmatrix} = \frac{1}{2} [q_a + q_b, p_a + p_b] \\ = i$$

And so we have the same uncertainty relation between these joint observables as the quadratures themselves:

$$\Delta q_2 \Delta p_2 = \frac{1}{2}$$

We can calculate the uncertainty in these observables for the TMSV

Recall

Aalto University

$$\Delta q_2 = \sqrt{\langle q_2^2 \rangle - \langle q_2 \rangle^2}$$

To calculate this requires several applications of the squeeze operator identities, ex.,

$$\langle a^{\dagger}b^{\dagger} \rangle = \langle 0|S^{\dagger}aSS^{\dagger}bS|0 \rangle = \langle 0|(a^{\dagger}\cosh r - e^{i\theta}b\sinh r)(b^{\dagger}\cosh r - e^{i\theta}a\sinh r)|0 \rangle$$

Two-mode squeezed vacuum

$$\Delta q_2 = \frac{1}{\sqrt{2}} \sqrt{\sinh^2 r + \cosh^2 r - 2\cosh r \sinh r \cos \theta}$$

$$\Delta p_2 = \frac{1}{\sqrt{2}} \sqrt{\sinh^2 r + \cosh^2 r + 2\cosh r \sinh r \cos \theta}$$

Choosing $\theta = 0$

$$\Delta q_2 = e^{-r} / \sqrt{2}$$

We can "squee $\Delta p_2 = e^{+r} / \sqrt{2}$ one observable at the expense of the other

Two-mode squeezed vacuum

The interesting properties show up in the correlations between quadrature obs.

$$q_{2} = \frac{1}{\sqrt{2}}(q_{a} + q_{b})$$

$$= \frac{1}{2}(a + a^{\dagger} + b + b^{\dagger}) \qquad \Delta q_{2} \Delta p_{2} = \frac{1}{2}$$

$$p_{2} = \frac{1}{\sqrt{2}}(p_{a} + p_{b}) \qquad \Delta q_{2} = e^{-r}/\sqrt{2}$$

$$= \frac{i}{2}(a^{\dagger} - a + b^{\dagger} - b) \qquad \Delta p_{2} = e^{+r}/\sqrt{2}$$

Parametric gain with two pumps

Two-mode squeezing:

 $\langle \tilde{a}_{\text{out}}[\xi]\tilde{a}_{\text{out}}[2\Delta_2 - \xi'] \rangle = \frac{1}{2}\exp(i\varphi_2)\sin\theta\sinh 2\lambda \times \delta(\xi - \xi')$

"Beam splitter correlations": $\left\langle (\tilde{a}_{\text{out}}[2\Delta_1 - \xi])^{\dagger} \tilde{a}_{\text{out}}[2\Delta_2 - \xi'] \right\rangle = \frac{\sin 2\theta}{2} e^{i(\varphi_2 - \varphi_1)} \sinh^2 \lambda \times \delta(\xi - \xi')$

Peaks at fixed detuning

- seen only in the vicinity of the cavity resonance

- squeezing correlations:

 $\langle \tilde{a}_{\mathrm{out}} \tilde{a}_{\mathrm{out}} \rangle_{T=0}(\nu)$

NIST, Chalmers, NEC ETH, Paris, Yale, ...

Lähteenmäki, P., Paraoanu, G. S., Hassel, J. & Hakonen, P. J. Proc. Natl. Acad. Sci. **110**, 4234–4238 (2013).

Displacement operator

Coherent states can be generated using the displacement operator:

$$D(\alpha) = \exp(\alpha a^{\dagger} - \alpha^{*}a) \qquad D(\alpha) = e^{-\frac{1}{2}|\alpha|^{2}} e^{-\alpha a^{\dagger}} e^{-\alpha^{*}a}$$
$$|\alpha\rangle = D(\alpha)|0\rangle$$

Glauber state

$$\left| \alpha \right\rangle = e^{-\frac{1}{2} \left| \alpha \right|^2} \sum_{n=1}^{\infty} \frac{\alpha^n}{\sqrt{n!}} \left| n \right\rangle$$

Minimum uncertainty, equal between X_1 and X_2

$$\Delta X_1 = \Delta X_2 = \frac{1}{\sqrt{2}}$$

Beam splitter

$$\begin{aligned} a_{C}^{\dagger}a_{C} &= (\cos\theta a^{\dagger}_{A} - \sin\theta a^{\dagger}_{B})(\cos\theta a_{A} - \sin\theta a_{B}) & \left\langle a_{C}^{\dagger}a_{C}\right\rangle = \left\langle a_{D}^{\dagger}a_{D}\right\rangle = 1 \\ &= \cos^{2}\theta a^{\dagger}_{A}a_{A} + \sin^{2}\theta a^{\dagger}_{B}a_{B} - \sin\theta\cos\theta(a^{\dagger}_{A}a_{B} + a^{\dagger}_{B}a_{A}) \end{aligned}$$

$$a_D a_C = (\sin \theta a_A + \cos \theta a_B)(\cos \theta a_A - \sin \theta a_B)$$

= $(\cos^2 \theta - \sin^2 \theta)a_A a_B + O(a_A^2, a_B^2)$

$$\left\langle a_{C}^{\dagger}a_{D}^{\dagger}a_{D}a_{C}
ight
angle =\cos^{2}2 heta.$$

Data analysis II

Coherent population trapping (CPT)

$$|\Psi(0)\rangle = \frac{1}{\sqrt{2}}|b\rangle + e^{-i\varphi}\frac{1}{\sqrt{2}}|c\rangle$$

Dark state:

- population trapped on \ket{b} & \ket{c}
- no absorption

