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Content of the talk:

. The model of one-dimensional potential with short-range correlated
random force: formulation and possible physical origin

. Basic parameters and regimes

. Sub-diffusion regime x=T/E <1 :
non-stationary distribution of escape times.

. ac response and noise within dynamically self-induced well :
simple aging effect



Diffusion in a random-field-induced potential

g: Fx)+F +m = -%gm (FQ)) =0, (F(x) F(x)) = v 8(x—x)

F is the driving force Static random force

M is the thermal noise: (7;.' )m))=2T6(-1).
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Realizations:

Kink in the 1D Random-Field Ising model

Phase boundary between 2 phases near disordered 1%-order transition
A particle coupled to an linear defect in 2D disordered media



Basic parameters and regimes

Typical “bare” energy relief Typical relief around moving particle
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Probability to find high energy barrier T~ exp(E/T) is the delay time

p(E)= E;'exp(— E/E,), E=E, The corresponding length is
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Derivation of the p(E) distribution

Random potential relief e(x) is defined by a random walk

d oV
= —F+f(z) = - af) + f(=) (f(z)f(z')) = vd(z — =)

This RW can be considered like a Langevin equation

: . _ Effective temperature:
in presence of noise (x— t) and potential : ]
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Probability to find high energy barrier




Consider first the high-temperature region, x = 1.
The mean total time which the particle needs to get
through the system of length L is

L |® L/x o xy =t b= (k—1)2

Tn

average velocity > 0

Dynamic phase transition: when K = —  goesto unity, v — 0

At K < 1 the average time to travel the segment of length L diverges

That indicates the lack of self-averaging among the energy barriers:
very rare but also very deep potential wells dominate statistics

fmax(L} is the largest probable waitiﬁg_t'irﬁe @
E} E Y(r)dr =1
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Non-stationary driftat « <1

The origin of sub-linear drift can be understood as a result of subsequent
trapping of a particle by more and more deep potential wells
as the total time of motion increases: this is an example of aging effect

New notion will be useful: remnormalized distribution of time delays

Probability density to find a
particle in a well with delay time

t after it moves for the time t

V)~ (1) ~t7" (11515 7pe(L))

The corresponding renormalized distribution for energy barriers:

1 —
Pa(E) ~exp ( ~ - E) at k >1  (Ep) =—L_
x —1

Stationary regime sets in at

E
The barrier size  (fr) = <FR> =T _TI)F 1, > ty ~ e/t=D
W 1




Typical relief around moving particle (Er)

Non-statioh\ary time-delay distribution atkx <1:

1_-": - K
1'JF"R(T].!,“,H)w_u?]_—M_1' . Tl:\'\ni‘rﬂfw (Eg) =Tlnt,, {fg)=(T/F)lnt,
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On time-scales t<<t_ particle can be considered
to sit inside symmetric potential\\well of the form

Ur(x) = Flx| + r fx')dx
0



ac response and noise within dynamically

self-induced potential well
(in the limit of infinite waiting time t )

Distribution function P(x,t) determines probability density to find a particle

near the point x at time ¢ in presence of an oscillating force f, el
8P 3 [..0P oUg -
— T — o —fwt >
at E.r[ ax+(ﬂx fue )f}
P(x,t) = Po(x) + Py(x) f, e ™ where P,(x) = exp[— Ur(x)/T]

IS the equilibrium solution inside renormalized potential well

!

susceptibility X(w)=d{x(w))/0f, = J. dx P,(x) x

can be expressed in terms of eigenfunctions |@, andeigenvalues £,

2 : d 2 2
of the Schrodinger — like equation 7Y _ 2% 1 ( ﬂ ) _T3Ug W
at ax2 L[4\ o 2 ax?




Relation between Fokker-Planck and
( Imaginary-time) Schrodinger equations

Fokker-Planck equation for probability density: ¢=—T :{: +&(z,1)

1 09 o) 6P 8§V CE(z, 8)E(2/, 1) >=2TT8(x—x')6(t—t')
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Stationary solution:

P (g} =A~" exp (_ _; V[cpx}) under the condition A4 = jﬂxp (_ % V{@.) )D{pfim

Transformation Z{@,.} =exp (— é Vi, j) Vip,] leads to
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Susceptibility in terms of the Schrodinger eigenfunctions

_ 1 fa 2
X(w)= Tgﬁﬂ.—f[ﬂT|<ﬂ|I|ﬂ>l -

!
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(0]22|0) =
Note that ~ x (0) = = (0]x?|0) ~ as it should be

Introducing spectral density g(e)= ) 8(¢—¢,)|(0|x|a)|* one obtains

( ) - 1 de g (E) E g(e) is well-defined for renormalized
X\W) = T e —iwT potential U_(x) only
Itis possible to show that at low energies & << 1/t T, = Ta exp(1/k)

g(e) o p(E)=Zﬁ(E“Eu}*I gk —1

i ™

_ _ BoucHAuD, J. P., COMTET, A., GEORGES, A. and
Localization length does not Le DoussaL, P., Europhys. Lett. 3 (1987) 653.

depend on energy € : lg =T/F (for bare potential U(x) )



Dissipative response and noise in t —> oo limit

dEg(E)E _-,,,_QTf cwl
X(m)_?J e—iwl = 31[4)_1?2 deple) 24 (wT')?
o0y = 22 = 23
. atsmall k¥ <<1
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Noise power:
f 2T T F
Cw) = (@5) = - W)~ 7 =F —

Nearly 1/f noise at low values of «



Dissipative response and noise at finite long t

(Er) = Tlnt,, (fg) = (T/F)lnt,

Distribution of the delay times:

_ f "FR(T]EW)=——1]__:: TN, TI=T=I,
R A X Iy

The eigenstates within a well are now quasi-discrete, with a nonzero decay rates

r, are of the order of 7~ !~ exp(— E/T) mean decay rate I' = (I',) . is

dr 1— H?/,;_} -
I'=| — Wg(r|t,)=——=1ts""' ismuch larger than 1/t
T K w
) 1 L T 1
Jm y(w) o @ f( 1—-:) Clw) o ——f —r
Wl / Wiy

f@0)=1 : « , :
Non-stationary “1/f° noise



Aging In spin glasses

Europhys. Lett., 18 (7), pp. 647-652 (1992)

Can Aging Phenomena Discriminate between the Droplet
Model and a Hierarchical Description in Spin Glasses?
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Conclusions

« Simple 1D model accounts for dynamically
generated hierarchy of relaxation modes
and aging behavior
 On moderately high frequency scales,
1/ ®* noise is obtained, with 1-u=x << 1 atlow
temperatures

« Forafinite wt, a correction to a pure power law

depends on the scaling parameter ot * Inagreement

with experiments on spin glasses (M.Ocio et al)



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

