

Open problems of utilizing noise in energy harvesting systems

<u>B. Andò¹</u>, S. Baglio¹, A. R. Bulsara², V. Marletta¹

¹Department of Electric Electronic and Information Engineering, DIEEI, University of Catania bruno.ando@unict.it

> ²Space and Naval Warfare Systems Center Pacific, San Diego, CA, USA bulsara@spawar.navy.mil

July 12th, 2018

DIEEI University of Catania, Italy

Main activities of the Department are teaching, basic and applied research mainly focused on the following areas:

Information Technology Automation, Control Systems and Robotics Electro-technology Electrical Systems Electrical Machines, Drivers and Power Electronics Microelectronics Instrumentation, Sensors and Multi-Sensor Systems Telecommunication

Research Laboratories have been developed in areas above mentioned and each laboratory is equipped with up-to-date hardware and software systems both for the educational and the experimental activities.

DIEEI University of Catania, Italy

Main activities of the Department are teaching, basic and applied research mainly focused on the following areas:

Information Technology Automation, Control Systems and Robotics Electro-technology Electrical Systems Electrical Machines, Drivers and Power Electronics Microelectronics Instrumentation, Sensors and Multi-Sensor Systems Telecommunication

Research Laboratories have been developed in areas above mentioned and each laboratory is equipped with up-to-date hardware and software systems both for the educational and the experimental activities.

RESEARCH ACTIVITY AT THE "SENSORLAB@DIEEI-University of Catania, Italy"

Microsensors

MAIN RESEARCH TOPICS

-Micro&Nano sensors -Bio-sensors -InkJet Printed Sensors -Polymeric Sensors -Ferrofluid based sensors

-Smart multi-sensor systems vs Applications (Assistive Technology, Autonomous sensing systems, monitoring of pollutions and seismic activity)

- Energy Harvesting

Sensor design, validation and characterization

Embedded Multi-sensor Systems

Non Linear Energy Harvesting

WHAT IS ENERGY HARVESTING?

Energy harvesting or scavenging is a process that captures small amounts of (unused) energy that would otherwise be lost as heat, light, sound, vibration or movement, to power small electronic and electrical devices making them self-sufficient (recharge/replace batteries).

Benefits of EH

Maintenance free : no need to replace batteries

Improving efficiency: eg. computing costs would be cut significantly if waste energy were harvested and used to help power the computer

Enabling new technology: eg. wireless sensor networks (WSN) and smart dust

Opening up new applications: such as deploying sensors to monitor remote or underwater locations (hostile environments)

Environmentally friendly: disposal of batteries is tightly regulated because they contain chemicals and metals that are harmful to the environment and hazardous to human health

Wireless Sensor Nodes of WSNs

A WSN consists of:

- >> Sensors/Actuators
- >> Microcontroller (μC)
- Radio Tx-Rx
- Power (batteries, or....)

Problems in Powering Wireless Sensor Nodes

- high power consumption of sensor nodes
- limitation of energy sources for sensor nodes:
- prohibitive cost of providing power through wired cables or replacing batteries
- Small devices are very limited in the amount of energy that the batteries can store
- Smart dust approaches make it impossible to battery replacement

Vibration Energy

Ambient vibrations come in a vast variety of forms:

Human activity Home appliances

Cars

Machineries

Ambient vibrations energy is distributed over a wide spectrum of frequencies.

MATERIALS FOR ENERGY HARVESTING vs SOURCES

•Piezoelectric materials Mechanical stress ↔ electrical signal PM are ideal to collect Energy from Ambient Vibrations!

Human Walking-	low-frequency vibrations are just some of the potential sources that could be
	harvested by piezoelectric materials

- **Human Actions** the force used to press a button of a remote control is sufficient to power a wireless radio or infrared signal
- Human Motion there is much interest in harvesting the kinetic energy generated by the footsteps of crowds to power ticket gates and display systems
- Automotive EH sensors attached inside the tyres continuously monitor the pressure and send the information to a display on the dashboard

•Thermoelectric materials Temperature differences across the material \leftrightarrow Thermoelectric voltage A temperature across a thermoelectric crystal (i.e. one side is warmer/cooler than the other) causes a voltage across the crystal.

Road transport – Cars and lorries equipped with a thermoelectric generators (TEG) would have significant fuel savings.

•Pyroelectric materials Change in temperature ↔ electric charge
As the temperature of a pyroelectric crystal changes, it generates an electrical charge.
Pyroelectric EH

The pyroelectric effect is used in some sensors, but it is still some away from commercial energy harvesting applications

ARCHITECTURE OF A VIBRATION ENERGY HARVESTING SYSTEM ...

LINEAR ENERGY HARVESTER & VIBRATIONS

HOW TO INCREASE EFFICIENCY OF ENERGY HARVESTER?

Wish list for the 'optimal'' vibration harvester:

- 1) Harvesting energy over a wide frequency band
- 2) No need for frequency tuning
- 3) Harvesting energy below 100 Hz

Several approaches have been proposed:

- Frequency Tuning
- Multi-modal devices
- Frequency up conversion mechanism
- Non Linear conversion mechanisms

LINEAR HARVESTER **vs** NON LINEAR DEVICES

The Snap Through Buckling structure (STB)

- Resonant behaviour
- Narrow frequency bandwidth
- Small inertial mass and high resonant frequency at micro/nano-scale
- Output power is a linear function of the input vibration

- Large frequency bandwidth
- Higher efficiency due to high impact velocity
- Increased beam strain
- Output power quite independent on the input strength

Non Linear Energy Harvester @

Dipartimento di Ingegneria Elettrica, Elettronica e Informatica

Space and Naval Warfare Systems Center Pacific, San Diego, CA, USA

ONRG - NICOP - N62909-15-1-2015 AWARD

THE DOUBLE PIEZO – SNAP THROUGH BUCKLING HARVESTER (DP-STB-NLH)

B. Andò, S. Baglio, A. R. Bulsara, V. Marletta, A. Pistorio, Performance Investigation of a Nonlinear Energy Harvester with Random Vibrations and Sub-Threshold Deterministic Signals, IEEE Trans. Instrum. Meas. 2017, 66(5), 992-1001.

Smart&Authonomous Sensing Systems @SensorLab

DIEEI

THE PL-DP-STB-NLH

B. Andò, S. Baglio, V. Marletta, A. Pistorio, A. R. Bulsara, A Low Threshold Bistable Device for Energy Scavenging from Wideband Mechanical Vibrations, accepted for publication on IEEE Trans. Instrum. Meas. 2018.

THE AR-DP-STB-NLH

B. Andò, S. Baglio, V. Marletta, A. Pistorio, A. R. Bulsara, A Measurement Methodology for the Characterization of a Compensated Nonlinear Energy Harvester for Vertical Operation, accepted for publication on IEEE Trans. Instrum. Meas. 2018

How to estimate the optimal position of the repulsive magnet?

THE DP-STB-NLH: typical dynamics

Behaviour in case of a Deterministic Input Signal

THE AR-DP-STB-NLH @ SensorLab - Unict

Performances in terms of number of swicthings

DP-STB-NLH: Electrical Behavior

$$P_e = \frac{V_{RMS}^2}{R} \left(W \right)$$

where V_{RMS} is the RMS voltage measured across the load R (0.1 – 100 k Ω)

Efficiency:
$$\eta = \frac{P_e}{P_m}$$

$$P_m = \frac{L}{t_s} = \frac{F * s}{t_s} = \frac{m * A_{RMS} * s}{t_s}$$

with

m = proof mass (4.11 g);

- s = the distance the beam travels before switching (1 mm)
- t_s= average switching time of the beam

A comparison between efficiencies

		PL-DP-STB-NLH			DP-STB-NLH				
	f (Hz)	A _{RMS} (m/s²)	P _m (W)	P _e (W)	η%	A _{RMS} (m/s ²)	P _m (W)	P _e (W)	η%
	0.5	11.71	0.76e-3	29.33e-6	3.87	13.68	0.76e-3	26.68e-6	3.52
	1	11.80	0.79e-3	55.79e-6	7.02	13.94	0.83e-3	49.05e-6	5.90
	2	12.04	0.95e-3	103.85e-6	10.99	15.60	1.49e-3	115.80e-6	7.74
× / ,	3	12.32	0.94e-3	117.92e-6	12.61	15.90	1.63e-3	158.71e-6	9.74
	4	12.60	1.27e-3	203.26e-6	15.98	16.41	1.95e-3	226.29e-6	11.60
	5	12.83	1.66e-3	273.85e-6	17.62	16.56	2.17e-3	271.00e-6	12.51

	AR-STB-NLH						
f (Hz)	A _{RMS} (m/s ²)	P _m (W)	P _e (W)	η%			
0.5	8.71	0.54e-3	18.7e-6	3.5			
1	8.74	0.54e-3	43.0e-6	8.0			
2	8.82	0.78e-3	98.8e-6	12.7			
4	9.93	1.55e-3	330.3e-6	21.3			
5	10.22	1.76e-3	412.1e-6	23.5			

Devices behaviour in case of a Band Limited Noise*

THE DP-STB-NLH: observed switchings and piezoelectric output voltage

THE PL-DP-STB-NLH vs DP-STB-NLH

Peditor of the scrifte shous of the lose STR	e4	
	Ź	Picemelectric .
eca.		Ĺt
	X	6.04 cm
	₩	I sameser

, un	PL-DP-STB-NLH						
-1	б _А (m/s²)	P _m (W)	P _e (W)	η%			
5 cm	7.18	0.76e-3	4.23e-6	0.56			
	8.07	0.85e-3	16.25e-6	1.91			
	8.84	0.93e-3	27.21e-6	2.92			
	9.98	1.05e-3	65.56e-6	6.23			
	11.72	1.23e-3	123.87e-6	10.04			
	12.58 1.33e-		160.98e-6	12.15			
	13.48	1.42e-3	187.50e-6	13.22			
	14.58	1.53e-3	225.07e-6	14.67			
	15.09	1.59e-3	248.63e-6	15.66			

	DP-STB-NLH						
	б _A (m/s²)	P _m (W)	P _e (W)	η%			
	8.42	0.89e-3	4.32e-6	0.49			
	9.00	0.95e-3	12.3e-6	1.29			
	10.03	1.06e-3	15.4e-6	1.46			
	11.65	1.23e-3	40.6e-6	3.30			
_	12.56	1.33e-3	50.3e-6	3.80			
ectaria:	13.60	1.43e-3	69.6e-6	4.86			
	15.25	1.61e-3	130e-6	8.03			
6.04 cm	17.07	1.80e-3	150e-6	8.23			
	18.88	1.99e-3	200e-6	10.14			

THE AR-DP-STB-NLH

б _{лсс} (m²/s ⁴)	P _m (W)	P_ (W)	ŋ%
59.52	8.29e-4	26.17e-6	3.16
113.4	1.15e-3	1.28e-4	11.2
197.3	1.51e-3	2.71e-4	17.88

Modeling

MODELING OF THE DP-STB-NLH

A comparison of the measured beam reaction force along the X-axis as a function of the displacement along the same axis and the predicted values by the proposed model

The elastic potential U(x) reconstructed by using the identified model parameters.

MODEL FITTING TO THE DYNAMIC MECHANICAL BEHAVIOR

 $m\ddot{x} + \frac{d}{\dot{x}} - \Psi(x) = gF(t)$

University of Catania, Italy

DIEEI

Parameters d and g, have been estimated by the Nelder-Mead optimization algorithm using the following minimization index:

 N_{Meas} and N_{Pred} refer to the measured and predicted switchings of the bistable device

Model assessment in case of a Band Limited Noise input

Model behaviour with a Band Limited Noise

Model simulations with a Band Limited Noise

Number of switching events vs the standard deviation of the noise.

Simulations with a <u>subthreshold deterministic</u> <u>signal</u> with a superimposed Band Limited Noise

niversity of Catania, Ita

EE

Subthreshold signal with a superimposed Band Limited Noise

 $F(t) = m(A \sin(\omega t) + n(t))$ A and ω are the amplitude and the frequency of the deterministic signal, and n(t) is the band limited noise.

Subthreshold signal with a superimposed Band Limited Noise

OPEN PROBLEMS IN NOISE-ACTIVATED NLH

Development of a complete analytical model taking into account both mechanical and electrical behaviours

Model assisted design

> Miniaturization and integration

<u> EI – University of Catania, Ita</u>

Experimental assessment of noise-deterministic driven behaviour

Open problems of utilizing noise in energy harvesting systems

B. Andò, S. Baglio, A. R. Bulsara, V. Marletta

bruno.ando@unict.it

Electromagnetic vibration exciter

CHARACTERIZATION OF THE AR-DP-STB-NLH BY THE NEW SETUP

The proof mass on the beam is composed by **two** neodymium permanent magnets S-10-04-N (with a total weight F_1 = 4.6 g) and 2 hemispherical inox steel parts to improve the impact on the piezoelectric beams

Material	NdFeB
Diameter	10 mm
Height	4 mm
Direction of magneti	sation axial (parallel to height)
Coating	Nickel-plated (Ni-Cu-Ni)
Magnetisation	N42
strength	approx. 2 kg (approx. 19,6 N)

The repulsive magnet is a neodymium permanent magnets S-08-01-N

Material	NdFeB
Diameter	10 mm
Height	1 mm
Direction of magnetisation	axial (parallel to height)
Coating	Nickel-plated (Ni-Cu-Ni)
Magnetisation	N35
strength	approx. 500 g (approx. 4,9 N)

EXPERIMENTAL CHARACTERIZATION OF THE AR-DP-STB-NLH

Examples of observed signals in case of the minimum acceleration assuring the maximum switching rate @ 1Hz

The values of the minimum RMS acceleration, A_{RMS} assuring the maximum switching rate for each frequency and tilt configuration, in the case of the repulsive permanent magnet placed underneath.

		Tilt (°)				
		0	30	45	60	
(z	0.5	8.72 m/s ²	9.71 m/s ²	10.98 m/s ²	13.86 m/s ²	
H) X	1	8.73 m/s ²	9.73 m/s ²	11.2 m/s ²	13.96 m/s ²	
enc	2	9.01 m/s ²	9.85 m/s ²	11.76 m/s ²	15.21 m/s ²	
edn	4	9.84 m/s ²	10.94 m/s ²	13.24 m/s ²	15.91 m/s ²	
لت ل	5	10.22 m/s ²	12.85 m/s ²	14.27 m/s ²	17.88 m/s ²	

The values of the minimum RMS acceleration, A_{RMS} , assuring the maximum switching rate for each frequency and tilt configuration, in the case without repulsive permanent magnet placed underneath.

		0	30	45	60
Hz)	0. 5	16.73 m/s ²	16.41 m/s ²	15.78 m/s ²	14.55 m/s ²
icy (1	17.37 m/s ²	16.52 m/s ²	16.15 m/s ²	14.57 m/s ²
luen	2	17.37 m/s ²	16.95 m/s ²	16.15 m/s ²	14.78 m/s ²
Freq	4	18.64 m/s ²	18.40 m/s ²	16.94 m/s ²	16.13 m/s ²
	5	21.03 m/s ²	20.01 m/s ²	19.42 m/s ²	18.64 m/s ²

THE PL-DP-STB-NLH

DIEEI – University of Catania, Italy

EXPERIMENTAL CHARACTERIZATION OF THE AR-DP-STB-NLH: Tilt = 0°

Normalized number of complete switches vs the RMS acceleration

f (Hz)	a _{RMS} (m/s²)	P _m (W)	P _e (W)	η%			
0.5	8.71	0.54e-3	1.87e-5	3.5			
1	8.74	0.54e-3	4.30e-5	8.0			
2	8.82	0.78e-3	9.88e-5	12.7			
4	9.93	1.55e-3	33.03e-5	21.3			
5	10.22	1.76e-3	41.21e-5	23.5			

THE ENERGY CONVERSION EFFICIENCY

The electrical power produced by the DP-NLH device as been evaluated as:

$$V_{RMS}^2 / R$$

where V_{RMS} is the RMS voltage measured across the load $R = 15 \text{ k}\Omega$ assuring the optimal power transfer.

The performance of the STB harvester has been evaluated by estimating the power conversion efficiency: $\eta\% = \frac{P_e}{P_m} 100$ where, P_e and P_m denote the electrical and mechanical power, respectively.

THE DP-STB-NLH

$\Delta Y=1$ mm (precompression) ΔX =9mm (distance between stable states)

A _{RMS (m/s} ²)	V _{RMS} (V)	P _m (W)	P _e (W)	η%
5.59	0.74	0.58e-03	54.07e-06	9.27
6.32	0.79	0.66e-03	62.00e-06	9.40
7.32	1.02	0.76e-03	104.80e-06	13.73
8.86	1.27	0.92e-03	160.00e-06	17.31

$$P_m$$
 = mechanical power evaluated as $P_m = \frac{L}{t_s} = \frac{F * s}{t_s} = \frac{m * A_{RMS} * s}{t_s}$

with

 P_e

m

 t_s = 0.039 average switching time of the beam

m = proof mass (4.11 g);

s = the distance the beam travels before switching (1 mm)

$$P_e = electrical power evaluated as P_e = \frac{V_{RMS}^2}{R_{load}}$$

is the electrical efficiency of the harvester

THE PL-DP-STB-NLH

Model simulations with a Band Limited Noise

