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Symbols used in this thesis

General symbols

L

A

Ji

A,

AZ

Aac

Ay

J

I

R(.)
3(.)
()
()
()
()
<. .>
<>y
() x ()
(00

operator

function

scalar parameter

matrix

vector of parameters

vector function

transverse component of a vector function
longitudinal component of a vector function
x component of a vector function in Cartesian coordinates
y component of a vector function in Cartesian coordinates
tensor

transverse component of a tensor
longitudinal component of a tensor
longitudinal direction

imaginary unit

unit matrix

unit vector in longitudinal direction

unit vector normal to a surface

real part

imaginary part

complex conjugation

inverse of an operator

transpose of an operator

Hermitian transpose of an operator

inner product

pseudo-inner product

vector product of two vectors

scalar product of two vectors

Physical quantities

D
B
E
H
z
i

electric flux density

magnetic flux density

electric field intensity

magnetic field intensity
permittivity tensor of the medium
permeability tensor of the medium
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€ —  relative permittivity of the medium

. —  relative permeability of the medium

€0 —  permittivity of the vacuum

Lo —  permeability of the vacuum

c —  speed of light in the vacuum

w — angular frequency

f —  frequency

0. — propagation constant

Operators

V x(.) —  rotation operator

V() —  divergence operator

V() —  gradient operator

Vi () —  transverse divergence operator

V(L) —  transverse gradient operator

Functions

d(k, 1) —  Kronecker symbol (6(k,l) =0 for k # 1, and §(k, k) = 1)
Ji(r) —  Bessel function of order i

NZ(T’) —

Neumann function of order 7



Chapter 1

Preface

1.1 Motivation and background

Many fundamental laws of physics are described by partial differential equations. In order
to understand and predict the behavior of nature, one has to have means to resolve these
equations for various boundary conditions. To this end many techniques have been devised
in the last century. In the modern world, in which a computer became a commodity, the
most popular approach is to take advantage of their data processing speed to perform all
the calculations. With the constant progress in performance of personal computers the
numerical modeling of various processes is gaining importance and momentum.

One of the simplest methods of the computational approach to differential equations
in general, whose origins go back way before the computer age!, involves replacing the
continuous domain with a discrete one and evaluate the derivatives with approximate
formulae based on the Taylor series. In other words, one writes down the equations repre-
senting laws of physics in a finite number of space points. The derivatives are represented
by a simple linear combination of field values defined at neighboring points. Usually
the points are arranged in a form of a structured mesh. For elliptic partial differential
equations, this approach results in a system of linear equations which are then solved by
means of standard linear algebra methods. For parabolic and hyperbolic systems one gets
implicit or explicit iterative schemes which describe the evolution of field with respect to
a selected variable.

The approach described above is at the heart of the family of various numerical tech-
niques which are known as finite-difference methods [3,48,86]. Along with the finite-
element methods [36,86] they form the core of the majority of general purpose numerical
solvers which are designed to solve partial differential equations. One obvious corollary
is that assuming an infinite precision of computations, the accuracy of the solution in the
finite-difference method depends primarily on the density of the mesh points. In the basic
algorithm the local error of evaluation the derivative is proportional to h or h?, where h is
the distance between points in the mesh. The simplest way on increasing the accuracy is
to refine the mesh. However, this technique increases the both the memory requirements
and the solutions time, regardless of the type of partial differential equation being solved.
Over last five decades considerable efforts have been made to improve the accuracy and
performance of the finite-difference methods in various applications. One of the areas
where a remarkable progress can be noted is computational electromagnetics.

! Ames [3] notes that Euler used this approach as early as in 1768.

11
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Understanding the behavior of electromagnetic fields in complex environment is cru-
cial for the development of modern civil and military communication systems including
the Internet, mobile telephony, satellite TV. The physics of electric and magnetic fields
is described by Maxwell’s equations which, from the mathematical point of view, form
a set of six partial differential equations in a four dimensional space-time continuum.
Accordingly, finite-difference methods are a natural candidate for the numerical analy-
sis of electromagnetic phenomena. Historically, the finite-difference techniques were first
applied to static problems in which the electric or magnetic field can be described by
a single scalar potential. In this case the boundary value problem becomes a classical
Laplace equation:

ViU =0 (1.1.1)

where U is a scalar potential. Solving this equation for various boundary conditions yields
not only field distribution but also allows one to calculate the capacitance or inductance
of a system under consideration.

The static analysis is sufficient for microwave transmission lines supporting TEM or
quasi-TEM modes. To analyze waveguides supporting purely TE or TM waves the har-
monic steady state can be assumed. In this case, Maxwell’s equation can be reduced to a
2D scalar Helmholtz equation in the form

VU - kiU =0 (1.1.2)

where k is the wavenumber of a plane wave in an isotropic medium. Here, the application
of the finite-difference technique leads to a standard matrix eigenvalue problem with a
sparse five diagonal matrix [3,48,68]. The solution of this problem gives one the cutoff
frequencies and field distribution for modes supported by the waveguide. A similar 3D
equations can be formulated for isotropic resonant cavities. Obviously, both Laplace and
Helmholtz equations can be analyzed with the right hand side source terms, in which case
one gets the response of a system to a given excitation. In context of electromagentics this
yields such parameters as monostatic and bistatic radar cross-section, scattering matrix
etc.

For scalar fields the application of the finite difference technique is straightforward,
at least for the interior problems. The finite difference analysis of simple waveguides and
resonators was developed in the 70 [18,32]. However, when scalar potential alone cannot
be used and more than one field component enter into the equations, new problems
arise. One of these problems concern the choice of the discretization points. Should
all the field components be defined in the same points or should there be a separate
mesh for each components? The answer to this question has lead to development of one
of the most important numerical techniques in computational electromagnetics. In 1966
while investigating the finite-difference formulation of Maxwell’s equations in time domain
(initial value problem), Yee [90] suggested a discretization scheme (fig.1.1.1b) in which two
interleaved meshes are used. The crucial point in the discretization scheme is that both
electric and magnetic fields are represented. Each electric field component is surrounded
by four magnetic field components which form a rectangular cell in a perpendicular plane.
The same is true for each magnetic field which is circulated by four perpendicular electric
fields. Due to this arrangement it is very easy to write down the discrete version of the
Faraday and Ampere laws and express the coupling between electric and magnetic field
underlying Maxwell’s equations. This idea of two interleaved meshes and discretization
of both electric and magnetic field components is a remarkable departure form a rather
natural tendency to simplify the numerical solution of the problem at hand by eliminating
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Figure 1.1.1: Single mesh (a) — all components are defined in the same mesh points,
and Yee’s mash (b) — two interleaved grids with different components defined on different
points.

quantities linked by analytical relations. In the case of Maxwell’s equations, one can
readily convert them to a wave equation. In the process, the electric or magnetic field is
eliminated and the number of unknowns is halved. If this is done before discretization,
only a single grid can be applied and this version of the finite-difference approach is still
used by some authors [1,8,24,70,71].

Yee used a dual mesh approach to develop a marching-in-time explicit update algo-
rithm for the analysis of transient phenomena. Since both electric and magnetic fields
are involved, the field update proceeds in a leap-frog manner. This is to say that only
one field (electric or magnetic) is calculated in a given iteration. Once this field has been
calculated for the particular moment in time, the complementary field can be advanced
by half-time step. Although extremely simple in implementation, the technique of Yee
requires considerable computer resources. For a simplest problem it requires at least three
times as many memory cells as the formulation using the scalar wave equations. This may
explain why the dual mesh approach did not seem to be very appealing until mid seventies
when Taflove and Brodwin [81,82] noted that the technique of Yee is advantageous for the
problems for which Green’s function is unknown such as the absorption of electromagnetic
wave in complex inhomogeneous biological tissues. The method was extended to three
dimensions and applied to both the sinusoidal steady-state and transient problems. In the
1980 the method received its present name the Finite-Difference Time Domain method
(FD-TD) [78]. Through the eighties the FD-TD was advanced by Gwarek, Hoeffer, Taflove
and Mur [12,14,15,27-30,41,54,55,78-80,84] and applied to the analysis of wave scatter-
ing, near and far fields, microwave cavities, planar and axisymmetrical circuits [29,30,84].
In the last decade the interest in the FD-TD method has exploded. As of September
10th, 2000 the Internet bibliographical database www.fdtd.org has recorded 3671 entries
including 1978 journal papers, 150 PhD theses and 6 books [35,45,77,79,80,83] devoted to
the FD-TD methods. Currently at least 7 commercial codes are on the market that use this
technique and problems such as nonlinear elements [11], soliton propagation [26,39,40,91],
dispersive media [25,75], antenna design [49] have been successfully analyzed using Yee’s
discretization scheme combined with explicit leap-frog update technique.

FD-TD is in fact an explicit finite-difference leap-frog scheme for initial value problem
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defined Maxwell’s equations formulated in time domain. However, one is often interested
in calculating the steady state solution for time harmonic excitation. In other words
the fields are calculated for a fixed frequency. This is achieved by solving the frequency
domain version of Maxwell’s equations. Again, the finite-difference approach can be used
to this end. By the way of analogy to the FD-TD this approach may be called the
finite-difference frequency domain technique or FD-FD for short. However, while the
FD-TD method is currently almost synonymous with Yee’s mesh, the meshing in FD-FD
frequently implies only a single mesh. This is because in frequency domain one usually
works with wave equations i.e. formulations which use electric or magnetic field alone.
As noted earlier this equation is derived from Maxwell’s equations by means of simple
differential operations. If the finite-difference scheme is applied after these operations
have been carried out, Yee’s meshing can not be applied. Weiland [88,89] was the first
to note that in fact Yee’s mesh is of use also in frequency domain provided that the
discretization is applied at the very early stage, that it to say the full set of Maxwell
equations, and one of the fields is eliminated by applying the discrete version of operation
V % (.) to one of the equations. Since two interleaved meshes are used, separate discrete
operators V X (.) have been defined on each grid. The Maxwell equations defined on the
continuum are transformed on grid equations with operators replaced by simple matrices.
Weiland demonstrated that matrices associated with discrete operators on one grid are
the transposes of the matrices defining analogous operators on the dual grid. When the
operators are defined is such a manner the discrete equation preserve the basic properties
of continuous ones. In particular, the following operator identities are satisfied:

VxV() =
V-Vx() =0 (1.1.4)

With basic operators defined, it is easy to manipulate Maxwell’s equations in order to
derive the discrete equivalents of partial differential equations arising in electromagnetics
and valid for the sinusoidal steady state. As a result one gets the system of linear equations
in which the system matrix is defined by simple multiplication of a few sparse matrices
representing appropriate continuous operators. These equations are solved by means of
iterative techniques such as conjugate gradients, successive overrelaxation or more recently
by Krylov space based iterative techniques such as GMRES or implicitly restarted Arnoldi
method [4,20,21,67,76].

Formalism? introduced by Weiland is a very powerful tool and makes it very easy to
investigate basic properties of grid equations. Moreover, one can easily prove that they
have the same properties as their continuous counterpart. In particular such properties
as energy conservation or nondivergent character of both electric and magnetic fields are
readily seen [17]. Although Weiland developed matrix formalism originally only for fre-
quency domain analysis, the discrete operators involve only space relations and, obviously,
FD-TD may also be presented in the matrix form using the same double set of discrete
operators. Needless to say, there is no need to form matrices explicitly while implementing
the update algorithms.

In its basic form, the FD-TD (FD-FD) method has a purely numerical character.
In principle, the accuracy improvement can be achieved by increasing the mesh density.
This approach however has several drawbacks. First of all is that the number of unknowns

2Weiland uses the acronym FIT — for finite integration technique. For time domain and regular mesh
FIT becomes FD-TD
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increases by the factor of eight each time the discretization step h is halved. Additionally
as in all explicit update schemes the maximum time step in the FD-TD is bounded above
by the time required by the electromagnetic wave to propagate from one cell point to
another. For FD-FD, which involves the solution of system of equations by means of
iterative technique, increasing the mesh density implies increasing the spectral radius
of the matrix, and this in turn slows down the convergence of the iterative solver [67].
As a result, the denser the mesh, the longer it takes to reach the steady state (for FD-
TD) or to converge for (FD-FD). These two factors alone explain why extensive research
effort is underway which would allow one to achieve high accuracy of FD-TD? method
while keeping the solution time low. Among most promising developments to this end
are the incorporation of the knowledge of the underlying physics into the method and
finding better field representation. One example of using field theory is the problem of
representation of various boundary conditions in the situation where the boundaries do
not conform to the grid lines. Gwarek [28] showed that it is possible to deform the cell
near boundary and use quasi-static expressions to evaluate the flux density. Another
successful application of analytical techniques is subcell modeling* of dielectric and metal
wedges [5,6,23,31,33,46,47,55,56,60-62, 64, 72-74], thin wires [19] and thin gaps [87].
These techniques require certain preprocessing of a geometry and allow one to maintain the
accuracy of the method for systems with complex boundary conditions without increasing
the number of unknowns. In the case of subcell modeling, the changes essentially involve
a modification of the expressions defining the derivatives (rotation, gradients) or integrals
(circulations and fluxes) for selected cells in the mesh. These changes have local character.
Apart from these localized modifications, where fields remain defined at grid points but the
finite-difference formulae that link E and H field take into account the deformation of the
field due to the presence of a material within a cell, new approaches have been proposed
which involve entirely different field representation within entire subregions or even the
whole domain of the problem. These methods often rely on the projection technique
known as a method of moments and represent the field with finite series using different
basis functions. One can mention here the explicit time domain algorithms such as partial
eigenfunction expansion (PEE) [2,43,51] or multiresolution time domain method which
decomposes field into wavelets [44].

As can be seen from the above, there is a great wealth of knowledge and concepts that
have been proposed for the finite difference methods based on Yee’s mesh, but it appears
that so far only one theory exists, namely that of Weiland. While Weiland’s formulation
works well for regular meshes and homogeneous media it has never been applied to the
newer concepts such as subcell modeling or hybrid method. The purpose of the work
is to reflect upon the nature of the finite difference techniques in time and frequency
domain and try to develop a unified framework alternative to that of Weiland, that could
also be applicable to all types of equations which can be derived both directly from
Maxwell’s equations and from field theory based models. Another goal is to investigate
basic properties of the modified equations, analyze sources of errors and propose a new
formulation controlling these errors and, at the same time, preserving the consistency
of the discrete equation with the continuous ones. A final goal is to develop hybrid

3Despite the fact that both FD-TD and FD-FD can be formally expressed using identical discrete
operators defined on Yee’s mesh, most of the developments regarding Yee’s mesh have been reported in
context of the FD-TD.

4By subcell modeling one understands accounting for the presence of a geometrically small feature
within a cell which significantly perturbs the field causing the increase of local error in a regular finite-
difference scheme.
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techniques which link method of functional analysis with the finite differences with the
ultimate goal of creating faster algorithms for the analysis of electromagnetic fields in
time and frequency domain without compromising the accuracy.

1.2 Goal, claim and scope of this work

In the context of the previous section, the overall goal of this thesis is to develop a frame-
work for creating new algorithms for faster finite-difference time and frequency domain
analysis of microwave structures that do not compromise the accuracy of the results and
self-consistency of the Maxwell’s equations. We make the following claims:

e It is possible to develop new local schemes for modeling of arbitrarily located metal
walls, dielectric boundaries or conductive wedges, which do not affect the self-
consistency and the spectral radius of the operators associated with the standard
Yee’s mesh, and yet reduce the error to the level that is comparable with the nume-
rical dispersion.

e In certain configurations, the computations may be significantly accelerated by com-
bining of the standard finite difference methods with the method of moments.

In order to prove the validity of the above claims, the following major steps will be
undertaken:

e Common framework will be created for the analysis of the finite-difference schemes
in the time and frequency domain and the relation between the results provided by
them will be established.

e Electromagnetic problems will be classified in the form of operator equations
expressed in terms of a few basic operators. Methods of discretization of the basic
operators will be presented, giving a common approach to the discretisation of every
electromagnetic problem.

e New algorithms will be developed for modeling arbitrarily located metal walls,
dielectric boundaries and conductive wedges. The spectral properties and consis-
tency with Maxwell’s equations will be thoroughly examined to show that new
schemes do not spoil the properties of the standard mesh.

e New hybrid techniques combining the standard methods with the method of expan-
sion of the field in the series of functions in 3D will be proposed.

e The standard finite-difference method will be combined with eigenfunction expan-
sion techniques in 2D. The new approach will speed up the calculations when the
same structure is analyzed for many frequency or propagation constant points.

e A series of tests demonstrating the efficiency and error reduction capabilities of the
new schemes will be carried out.
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1.3 Chapter outline

At the beginning, in chapter 2, the standard finite-difference schemes are presented. We
present a series of the explicit-update schemes which, when written for the domain of time,
form the Finite-Difference Time-Domain method. We also present the Finite-Difference
Frequency-Domain method. In the same chapter, we analyze the numerical dispersion
error. This error is strictly associated with the finite-difference schemes.

In chapter 3, we introduce a new concept of a symbolic space. This is a common
framework for continuous and discrete equations. The operators defined in the symbolic
space possess the same general properties in the continuous and discrete space. After
introducing the new concept we write Maxwell’s equations for 3D and 2D problems using
the new notation. Maxwell’s equations are expressed in terms of a few basic operators.
Discretization of these operators instead of whole equations gives a common approach
for various formulations of electromagnetic problems. Further on, we classify various
problems in the form of operator equations in terms of the basic operators. Then, we
show how to discretize the basic operators. We also give a note on the stability of the
explicit update scheme arisen from the discretized equations.

In chapter 4, we present local schemes for modeling of metal walls, boundaries between
dielectrics and conductive wedges. All the new algorithms are expressed in a form of
modification of a few basic matrices.

Chapter 5 presents hybrid algorithms with space domain decomposition. These algo-
rithms decompose the analyzed domain in space into a series of subdomains. The method
may be combined with the standard finite-difference approach. We present the hybrid
algorithms for modeling of subdomains uniform in one direction (eg. sections of waveg-
uides) and for general 3D subdomains.

In chapter 6, we present eigenfunction expansion techniques for analysis of waveguides.
These methods are based on method of moments and speed up the calculations when a
waveguide is analyzed for many frequencies or propagation constants.

Chapter 7 presents numerical results of the tests performed to validate the algorithms
presented in the previous chapters.
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Chapter 2

Standard finite difference schemes

2.1 Preliminaries

In this chapter, we recall the standard description of finite difference methods for solving
of electromagnetic problems. We start by presenting the problems by introducing the
general taxonomy.

In the mathematical terms, the electromagnetic problems may be presented as different
types of boundary value problems. They may be classified in various ways. When sources
are present in the analyzed domain, these problems are called deterministic and may be
written in the following general operator form:

Lu=g (2.1.1)

where L is an operator derived from Maxwell’s equations, u usually represents some or all
components of the electromagnetic field, and g represents sources. On the other hand, we
have nondeterministic problems, which involve free oscillations. They may be described
by eq. (2.1.1) with g = 0:

Lu=0 (2.1.2)

Another classification category concerns the domain of functions appearing in the
equations. The equations may be written for the domain of space and time as well as
for the domain of space and frequency. For shortness, we call them the time domain and
frequency domain formulations. Obviously, different solution methods have to be used for
each formulations. The time domain equations may be solved using so called the explicit
update techniques. Deterministic problems (i.e. problems of the form (2.1.1)) written in
frequency domain lead to a system of linear equations while nondeterministic frequency
domain formulations may be presented in the form of e.g. the following eigenvalue problem:

Mu = ANu (2.1.3)

where M and N are again operators derived from Maxwell’s equations, u represents the
field, and A is the eigenvalue with the physical interpretation associated with the frequency.

Very often, an advantage is taken of symmetries or other properties of the solution
space. For instance, if the domain is uniform in one direction, or mathematically speaking
it shows translational invariance in a distinguished direction, the analysis may be radically
simplified provided the original problems are reformulated. One situation, very frequently
occurring in computational electromagnetics, is uniformity (translational invariance) of
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the structure along a particular coordinate. For instance assuming z is the distinguished
direction, one can express the spatial variation of fields in the following form:

u(z) = ue 9P=* (2.1.4)

where [, is called the propagation constant. Note, that the first derivative with respect
to z may be now substituted by —j0.:

() i (2.1.5)
Using this fact one get the formulations formally similar to (2.1.1), (2.1.2) or (2.1.3) but
with different meaning of some of the parameters. For instance, in the case of formulation
(2.1.3), A may have physical interpretation associated with the propagation constant
rather than with oscillation frequency.

The electromagnetic problems presented above may be solved in different ways. In
this work we are concerned mainly with the finite-difference techniques. Depending on
the formulation, this approach may lead to a system of linear equations (deterministic
problems in the frequency domain), matrix eigenproblems (nondeterministic formulations
in the frequency domain or in the domain of propagation constant), or the explicit update
scheme (the time domain formulations). The algorithms based on the frequency domain
formulations are called the Finite-Difference Frequency-Domain methods. The explicit
update schemes in the domain of time are called the Finite-Difference Time-Domain
methods.

In this chapter we present the classical description of both methods.

2.2 Finite difference methods

All the finite difference methods considered in this chapter are based on the technique
named the central difference scheme which approximates first and second order derivatives
by differences with a second order accuracy. We present this technique in sec. 2.2.1.
Subsequently, we show how to apply the finite difference scheme to the solution of the
first and second order initial value problems and how these solutions are related to the
eigenvalues of the underlying operators. Fundamental issues related to the explicit update
schemes such as stability are addressed in sections 2.2.3.

Having outlined the basic issues, we proceed with the introduction of the FD-TD
(sec. 2.2.3.7) and FD-FD (sec. 2.2.4) in their classical forms.

2.2.1 Central differences

Discretization using the central difference scheme is based on expansion of functions into
the Taylor series. This series around hg are given by the following equations:

Ah, Of(h) Ah  32f(h) AR?  3Pf(h) Ah?
flho+=7) = _f(h)+—ah > T 3 T o aa +...Lh0(2.2.1)
Ah, df(h) A &2f(h) Ah: & f(h) Ah
flho = =) = _f(h)_—ah ~ 1t 2 3 " o m; +...Lh0(2.2.2)
T of (h) O2f(h) AR2 &P f(h) Ah3
flho + AR) = _f(h)+ o A+ = TR
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' f(h) AR
+ o ...Lho (2.2.3)
of (h O2f(h) AR2 3P f(h) AR?
' f(h) AR

Central interpolation From egs. (2.2.1) and (2.2.2) we derive the central interpolation
scheme:

f(ho+%)+f(ho—%)

f(ho) =~ 5
- 92 f(h) Ah?
= flho)+ =5 7hh0+0(ﬁh4) (2.2.5)

Eq. (2.2.5) shows that the error in this approach may be approximated by the following
expression:

9% f (h) Ah?

TR (2.2.6)

err X

h=hg

1st order central difference The same equations lead to the central difference approx-
imation of a first order derivative:

f(ho+%)—f(ho—%)

J'(ho) & Ah
_[of(h) | &Pf(h) AR? 4
- |52+ 5 12Lh0+0(m) (2.2.7)

The error in this case may be approximated as follows:

& f(h) Ah?
oh3 12

(2.2.8)

err =

h=hgo

2nd order central difference From eqs. (2.2.3) and (2.2.4) we get the central difference
approximation of a second order derivative:

f(ho + Ah) = 2f(ho) + f(ho — Ah)

fiho) = Ah
0*f(h) , 0'f(h) Ah? 4
Ah 2.2.
o T ont 12, , TOBM) (2.29)
with the error approximated by the equation:
Ot f(h) Ah?
=~ — 2.2.1
err ot 1z, ( 0)
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2.2.2 Integral interpretation

Let us now consider the following equation

1 B0 f(B) — f(4)

—f(r)dr = 17

7/, o (2.2.11)

This describes the mean value of the first derivative in the direction of integration between
two points A and B over the integration line of length L (see fig. 2.2.1). One may note

Figure 2.2.1: Integral interpretation of the finite difference scheme.

that this equation corresponds directly to eq. (2.2.7) when integrating over a straight line
of length Ah. However, eq. (2.2.11) is more general than the central difference scheme
described by (2.2.7) since it allows for arbitrary integration paths.

2.2.3 Explicit update schemes

Having briefly introduced the concept of central-differences, we can now show the appli-
cations of this concept to the solution of a simple initial value problems by means of an
explicit update scheme.

We present an explicit update algorithm for the first order differential equation
(sec. 2.2.3.1), for the second order differential equations (secs. 2.2.3.2 and 2.2.3.3), and
the leap-frog schemes (secs. 2.2.3.4, 2.2.3.5). Whenever possible, the conditions of the sta-
bility of the solution procedure are given. The discussion of the accuracy of the method
is postponed until sec. 2.3. Finally, in sec. 2.2.3.7, we introduce the Finite-Difference
Time-Domain method which is a special case of the explicit update algorithms related to
electromagnetics.

2.2.3.1 1st order central difference explicit update scheme

First order central difference explicit update algorithm arises from a first order differential
equation of the following form:

0

—u =L 2.2.12

or I ( )
Discretization of eq. (2.2.12) in time using the central difference approach leads to the
following equation:

u ™t —ut = 25 ATLa’ (2.2.13)
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Rearranging the terms in (2.2.13) we get the first order central difference explicit update
procedure:

™ = 25 ATLu’ + u' ! (2.2.14)
Eq. (2.2.14) may be written in a matrix form as follows:
u't! 2JATL 1| | o

EN i EA

Stability condition Iterative methods may be used in practice only if they are stable.
In order to derive the stability condition let us consider the following eigenproblem related
to eq. (2.2.12):

Writing scheme (2.2.15) for the k — th eigenvector uy, we have:

i+l , i
[ uf ] _ [ 27ATL 1 ] [ u§—1 ] (2.2.17)
ug, 1 0 Uy
From eq. (2.2.16), it follows that we may now replace operator L by its eigenvalue oy
corresponding to eigenvectors u; We get:

i+1 4 i
n | 27ATy 1 uj,
[% ] = [ 1 0 ] [ ui! (2.2.18)
Let us now convert the above equation to the following form
i+1 i
Uy B uy,
l ul ] = Y [ ! ] (2.2.19)

where 7, is a parameter showing how the corresponding eigenvector changes in one explicit
update step. We immediately see that if the scheme is to be stable then magnitude of 4
should be less or equal to one for all eigenpairs of operator L. The only question is how
to find ;. To this end we simply put ul™' = yui and ul, = v,ul ' and substitute this
for the left hand side in (2.2.18). Subtracting the resulting vector form both sides gives

0 | 2jAta—y 1 ul,
(o] [, a2
The determinant has to be equal zero, or

i — 2jATay, —1=0 (2.2.21)

The roots of this quadratic equation,in general complex, can be readily found using Vieta
formulae. We have
Veivke = —1  and i1 + Ve = 25 AT (2.2.22)

From the first equation it is seen that 41, Yx2 may be assumed in the following form:
V1,2 = FeFIATR (2.2.23)

where gy is a parameter which can be determined form the second Vieta identity. Using
(2.2.23) we get:
Vi1 + ke = 27 sin(A7aer) = 2j ATy (2.2.24)
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From (2.2.24) we calculate ay:

arcsin(ATay)

AT

As noted above, for the explicit update algorithm defined by eq. (2.2.14) to be stable,
the magnitude of v, cannot be greater than one for every eigenvalue «y. This implies
that aer must be real and from (2.2.25) we get the following stability condition for this
algorithm:

Qop = (2.2.25)

1

Kkmax

ay € R, A7 < (2.2.26)

2.2.3.2 Basic 2nd order central difference explicit update scheme

We shall now pass to the basic second order explicit update procedure which may be
derived from a second order differential equation of the form:

82
a2t =

Discretizing of eq. (2.2.27) using the central difference scheme, we get:

—Lu (2.2.27)

Wt oyt 1 = AR (2.2.28)
The explicit update algorithm may be derived from (2.2.28) by rearranging the terms:
utl = (2 — APL)ut — ! (2.2.29)

We may write eq. (2.2.29) in a matrix form:

l uiﬂ ] _ [ 2 — ?TQL —(1) ] [ uiil ] (2.2.30)

u u

Stability analysis As in the previous case we shall perform the stability analysis by
considering the eigenproblem given by the following equation:

azuy, = Ly, (2.2.31)

Since equation (2.2.30) must be valid for all eigenvectors of L, we get:

i+1 2 i
n | 2-At%q, —1 uj,
EE eI 22

U,

Again we transform the above equation to the form given by (2.2.19). This gives the
following characteristic equation:

Y — (2= AT +1=0 (2.2.33)
To solve this equation we note that
Tk =1 and 1 + e = —(2 — AT%0f) (2.2.34)
The first equation implies that the roots can be assumed in the form

Verp = €K (2.2.35)
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Consequently we get
Vi1 + Y2 = 2c08(ATae;) = 2 — AT’} (2.2.36)

This gives the following expression for o

arccos(1 — AT—Qa%‘”‘)

2
AT

ot = (2.2.37)

This equation leads to the stability condition. Since the magnitude of ~; cannot be
greater than one, the algorithm defined by eq. (2.2.29) is stable only if «. is real for all
eigenvalues ay, of operator L. Form (2.2.37) we see that this is satisfied if

2

Okmax

ap €R, AT < (2.2.38)

This constitutes the stability condition for the algorithm at hand.

2.2.3.3 General 2nd order central difference explicit update scheme
In this section, we develop a more general second order explicit update algorithm based

on the differential equation of the following form:

———u— —Ku=Lu (2.2.39)

We discretize eq. (2.2.39) using the central difference scheme and get:

1
AT2

1

(ui—i—l _ 2ui + ui—l) _ AT

K(u'™ —u™!) = Lo’ (2.2.40)
From (2.2.40), we get the equation describing the general second order explicit update

procedure:

A A A A .
(1+ %K)u”l = (2- AL — (1 — %K)u’_l (2.2.41)

Eq. (2.2.41) may be written in a matrix form as follows:

iyt B (1—|—%K) 0 -1 2 _ AL —1 1 0 o
[Ui ]_[ 0 1] [ 1 0][0 (1_£K)][ui1] (2.2.42)

2

Stability condition Derivation of the stability condition for the problem at hand
requires more sophisticated procedure than those presented in the previous sections for
the basic first and second order schemes. Here, we present only the final result. The
details of the derivation may be found for instance in [69]. It is shown there, that the
algorithm defined by eq. (2.2.41) is stable when the following conditions are satisfied:

2
[IL]

Ak € R, Ak >0, L=L", L >0, AT <

(2.2.43)

for every Ak, where Ak are eigenvalues of K.
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2.2.3.4 Basic leap-frog scheme

We now proceed to derivation of the basic leap-frog explicit update scheme which is used
when two coupled first order equations are to be solved. Let us consider the following set
of differential equations:

0
0

Both equations may be discretized in time with the central difference approach. We get:

I 4 4
A—(u”l—uz) = My (2.2.46)
-

I 4 .

T =) = N (2.2.47)

;

This leads to the following update algorithm:

u'tt = ATMTOP 4o (2.2.48)
vt = ATNu' 4 0 0? (2.2.49)

Note, that the calculation indeed proceeds in a leap-frog manner. The update equation
for u involves v calculated half a time step earlier.

By manipulating the equations we see that the approach defined by egs. (2.2.48) and
(2.2.49) is equivalent to the following scheme:

u = (24 APMN)u' -yt (2.2.50)
vt = (24 ATPNM)p 0 — (2.2.51)

The same expressions would arise from discretization of the following differential equa-
tions using the approach introduced in sec. 2.2.3.2:

92
-
2

%v — NMv (2.2.53)
-

Therefore, the analysis performed in sec. 2.2.3.2 is valid also in this case.

Stability condition Based on the discussion from sec. 2.2.3.2, egs. (2.2.38), (2.2.52)
and (2.2.53), we get the stability condition for the problem at hand:

2
AL € R, AL > 0, Ar <
- b= 7-_\/)\Lmax

for every A, where Ay, are eigenvalues of L, = —MN or L, = —INM (they are the same).

(2.2.54)
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2.2.3.5 General leap-frog scheme

The basic leap-frog scheme can be generalized to handle the following set of differential
equations:

0
0
5.0 = Nu + Rv (2.2.56)

Discretization of (2.2.55) and (2.2.56) gives:

1 ) ) ) 1 ) )
E(u“rl —u') = Mo 4 QP(UZ—H +u') (2.2.57)
L ivos _ i-05 ;1 ; -
1+0.5 _ 1—0. — Nu - 1+0.5 1—0.5 29
A (v v ) u' + 2R('z) +0"7) (2.2.58)

Egs. (2.2.57) and (2.2.58) lead to the following update procedure:

Wt = Ar (1 - %P) My +05 4 (1 - AQTP) (1 + %P) ul(2.2.59)
-1
V0 = Ar (1 — ER) Nu' + (1 — %R) (1 + %R) v (2.2.60)

Stability condition Egs. (2.2.59), (2.2.60) are equivalent to the following algorithms.

utt = (1 - —P) (1 - —MRM )1 {2 + AT? (MN - %MRMlP)] u
— (1 — —P) B 1 + ) -1 (2.2.61)
V't = (1 — —R) (1 - —NPNl)1 {2 + AT? (NM — %NPNlR)} V' 0P
- (1 - gR) 1 (1+£R) (2.2.62)

It is hard to derive a general stability condition for algorithms (2.2.61) and (2.2.62).
However, it may be shown (see [69] for details), that the scheme is stable in the following
special cases:

P=0, McER, M x<0, MN=MN? MN<O0, ArgL
||IMNJ|
(2.2.63)
or
R=0, MER, Mp<0, MN=MN?H MN<0, Ar< 2
VIIMN|
(2.2.64)

for every Ap, Ar, where Ap, Ag are eigenvalues of, respectively, P and R.
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2.2.3.6 Remarks regarding stability

Having introduced basic explicit update schemes which can be used to solve a large class
of initial value problems it is possible to make a general remark regarding the stability of
the iterative procedures. From conditions (2.2.26), (2.2.38), (2.2.43), (2.2.54) and (2.2.64)
it is readily seen that each scheme imposes certain conditions on the maximum time step
allowed. This can be usually satisfied by a suitable choice of A7. It has however to be
born in mind that there are additional conditions which impose restrictions on properties
of the operators involved. In particular, the semi-definiteness and symmetry are often
needed.

2.2.3.7 Finite-Difference Time-Domain method

As indicated in the introduction, in the field of computational electromagnetics the finite
difference explicit update scheme are traditionally called the Finite-Difference Time-
Domain method. These algorithms may have various forms depending on the formulation
from which they arise. As an example, we present a classical formulation of the Finite-
Difference Time-Domain method for analysis of a three-dimensional lossy structure. In
this case, Maxwell’s equations in the Cartesian coordinates may be written as follows:

0 _%() %() Hz(xayaz?t) a (Z‘ Y, %, t)
%() 80 _%() Hy(l‘vy)th) = aﬁ(x,y,z) (:E Y, =, t)
—) () 0 H.(x,y,z1) E.(z,y,z1)
Eﬂ? (l" y7 27 t)
+ o(x,y,2) | Ey(z,y,21t) | (2.2.65)
Ez(x y,z,t)
%() 80 _%() Ey(l‘vy)th) = _a:u(xayaz> Hy(x Y, z, t)
—5) () 0 E.(x,y,z2,1) H.(z,y,z2,t)
(2.2.66)
Field components are discretized in space and time as follows:
F gy iy, i) = Fzo + .82, yo + i,Ay, 20 + 1,02, g + i, At) (2.2.67)
Functions describing media properties are discretized in space:
Y(ig, iy, 02) = V(2o + 1,42, yo + 1, Ay, 20 + 1,A%) (2.2.68)

f and 1 are the discrete functions associated with physical quantities, respectively, F' and
Vs iy, 4y, iz, 4 are integers, o, Yo, 2o are coordinates of a reference grid point, Az, Ay,
Az are grid steps in directions z, y and z respectively, t, is a reference time, and At is
the time step.

Using Yee’s dual mesh to discretize electric and magnetic field one can write the
following update equations for the electric field [45,79]:

1

: 1
2€xz(lm +3 29 Zya

iy) — Atog,(iz + ;,iy, i)

. elt

it+1 . _
e, (zz+§,zy,zz) =

: 1
269&9& (Zz +3 29 Zya

iy) + Atog,(iy + %, GysTz)
2At

QEzz(lm + 2 Zya

iz) + Atogg(in + 3,0y,02)

S S S
T (2x+ iazyazz)
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% ]- 1 z+ ]_ 1
b ) o o330
[Ay +2,zy—|—2 +2,zy 2 )
Z+ 1 .. 1 z-‘,— 1 .. 1
G G B A (R D)
(2.2.69)
gt (2 i+ = ) _ 2y, (ig, iy + %,Z’ ) — Atoyy(ia, 1y + %’i ) et (Zz i _|_1 iz)
Y w9 2€yy(zm,zy—|— ir) + Atoy, (iy, 1, + ;,z) Y9
N 2At
2€yy (1, 1y + i) + Atoy,(iz, iy + 5 14.)
i o 1 B 1
[Az h:)er (x,zy—l—Q i, + ) ﬁ (x,zy 5)}
1 ZJ,» . 1 ZJr .
 a P (e gt ) T Zz)ﬂ
(2.2.70)
e <2 iy, i +1) _ 26a(iniyyis £ 5) = Aoz i iy i +3) <2 i z‘+1)
wnE 26..(ig, iy, ix + 3) + Atos, (ig, by, i +3) 2\ 772
2At
_l_

26, iy s io + 3) + Ato,(ig, iy, is + 1)

1 [ i+l /. T 1 it+3 T 1
|:E h?/t 2 (Zz—f_aazyazz—f_a)_hyt (z 5a2y7zz_§)]

ity (0. 1 1)_ +( L1 1)]
hz (Zz,ly+2,'lz+2 hz Ly Uy 27zz+2

(2.2.71)

Magnetic field components are updated using the following formulas [45, 79]:

1 1 i—1 1 1 At
hH— (z _7.z _> = hdf 2(.17' _7.z _>
z,2y+21—|—2 7 zy+21+2 +Mm(iz,iy+%,iz+—

)

S Y NS o
[A—z {ey (zx,zy+§,zz+ ) — €, (zx,zy+§,zz)]
b (st )
- N |€ Iz, y bz 5 €\l iyl a
Ay z Y 9 Y 2
(2

2.72)
1 1 i—1 1 1 At
hZH— (z _7-7-z _) = th(-z _7-7-z+_)+ :
USRS ) i L A D
[1[”('“’ '+1) e”(iii—l—l)]
-— |€ 2 72722 S - x )y bz
Az [ * v 2 v 2
U,/ 1.
- X [em (zx + §,zy,zz + 1) e ( zy,zz)H
2273)
1 1 -1 1 1 At
hZZH— (z =1 _7'2) = Zt 2(-1 _7- _7'2)
z—|—2,zy+22 z—|—21y+22 +,uzz(ix+%;iy+;7z)

L (1) =t s o)

~_ |€ Uy oot ylz ) — €4 (| lx o byy 1z

Ay L7 2" 2"

— i[eif(z’xﬂz’ +1iz)—eif(¢xz‘+liz)”
Az |V Yy v\
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(2.2.74)

Boundary conditions At this stage of discussion, we assume that the domain is sur-
rounded by perfectly conducting metal planes coincident with nodes of tangential electric
field components. In order to satisfy the boundary conditions, the field samples defined
at these nodes should be set to zero. Further on in this thesis, more sophisticated meth-
ods modeling arbitrarily located metal planes and different boundary conditions will be
presented.

Matrix form One may note, that the algorithm presented above is a special case of
the general leap-frog scheme introduced in sec. 2.2.3.5 with the following substitutions:

o (2.2.75)

u &I A (2.2.76)

v &g (2.2.77)
iscr 1

M &I 29 x () (2.2.78)
€
discr 1

N & v () (2.2.79)
0

p diser 7 (2.2.80)
€

R &2 (2.2.81)

where symbol ST Jenotes discretization. Note, that u, v are vectors, and operators M,

N, P and R are matrices. Matrices M and N are sparse and P is diagonal. The set of
matrix equations of the form (2.2.59), (2.2.60) is equivalent to the algorithm defined by
egs. (2.2.69)—(2.2.74).

Stability condition The above observation allows us to apply directly the results of
the analysis performed in sec. 2.2.3.5. In particular, we may write the stability condition
for the algorithm at hand. Starting from (2.2.64) we get the first condition:

~ 19

>0 (2.2.82)

In order to derive the second condition, we should estimate the norm of the operator MIN.
More detailed discussion of this problem performed further on, in sec. 3.9, will show that
we may use the following relation:

|IMN]| < dvg, (Alﬁ + A} + A;) (2.2.83)
where v, is the minimum speed of the wave in the analyzed domain. This and eq. (2.2.64)
give the second stability condition:
At < ! (2.2.84)
Umin\/ ﬁ + ALyg + ﬁ

In the above inequality we recognize the well known CFL (Courant-Freidrich-Lewy) con-

dition [45,79].
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Although operator MN is not symmetric and, hence, does not satisfy condition
(2.2.63), we may symmetrize it by constructing an equivalent algorithm with functions
u B \/EE and v &% \/Eﬁ . In this case, symmetry of MN, and its negative semdefi-
niteness — both follow form N = —M? which is true for Yee’s mesh.

2.2.4 Finite-Difference Frequency-Domain methods

So far, we have considered only the finite difference equations resulting from the initial
value problems. As noted, in computational electromagnetics one also is interested in the
boundary value problems specified for the sinusoidal steady state. Such problems occur
when Maxwell’s equations are written in the frequency domain. In this section, we shall
present the classical technique known as the Finite-Difference Frequency-Domain method.
The central difference techniques introduced in the previous sections are used for this task.
Depending on the form of the differential equation this method leads to two important
classes. When there are no sources in the analyzed domain, Maxwell’s equations may be
written in the form of eq. (2.1.2). In this case, the FD-FD method results in a matrix
eigenproblem. This version is introduced in sec. 2.2.4.1. On the other hand, if sources are
present (eq. (2.1.1)), the method leads to a system of linear equations. This algorithm is
presented in sec. 2.2.4.2.

2.2.4.1 Nondeterministic problems

As noted earlier in this text, discretization of the frequency domain version of partial
differential equations which is of interest in electromagnetics, often leads, for nondeter-
ministic problems, to a matrix eigenproblem. In terms of physical interpretation, the
problems may have one of the following meaning:

e Finding resonant frequencies and associated modes of a resonator. The eigenvalues
2

are resonant frequencies w or w?.
e Finding dispersion characteristics of a waveguide. The eigenvalues are propagation
constants (3, or 3? for various frequencies w.

e Finding inverse dispersion characteristics of a waveguide. The eigenvalues are fre-
quencies w or w? for various propagation constants (3,.

e Finding waveguide modes at cutoff. The eigenvalues are cutoff frequencies w or w?
for 3, = 0.

e Finding static modes of a waveguide — the eigenvalues: 3, or 52 for w = 0.

In every case the eigenvectors represent the field distribution of the associated modes.

To introduce the method, in this section we restrict our considerations to the algorithm
arising from discretization of Maxwell’s equations written in the Cartesian coordinates for
a three-dimensional structure, i.e. the problem of finding resonant frequencies and modes
of a 3D resonator. We assume that the electric and magnetic fields are harmonic functions
of time defined as follows:

E(z,y,zt) = E(z,vy,z)sin(wt) (2.2.85)
H(z,y,z,t) = H(z,y,z)cos(wt) (2.2.86)
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Maxwell’s equations take up the form:

O _%() %() Hz(x,y,z) | Ex(xaywz)

%(.) 0 —5.() Hy(z,y,2) | = we(x,y,2)| Ey(z,y,z2) |(2.2.87)
5 () &) 0 H.(z,y,2) ] E.(2,y,2)

0 _%(-) %(-) E.(x,y,2) ] H.(x,y,2)

%() 0 _%() Ey(x,y,z) = w:u(xvyvz> Hy(l',y,2> (2'2'88)
—5 () &0 0 E.(2,y,2) | H.(2,y,2)

We now proceed to discretization of the above equations using the same approach as in the
case of the FD-TD method, This is to say that Yee’s mesh is used and field components
and functions describing the properties material are discretized in space as follows:

iz, iy, i.) = Fxo + i,A2, yo + i,Ay, 20 + 1,A%) (2.2.89)

where f is a discrete function associated with physical quantity F'; ¢,, i,, i, are integers,
Zo, Yo, 2o are coordinates of a reference grid point, and Az, Ay, Az are grid steps in
directions x, y and z respectively. For Yee’s mesh, discrete equivalent of eq. (2.2.87) takes
up the form:

1 1
weg |ty + =, 0,0, | = . —
< 2 Y > ex:v(zz + %723;722)

1[h<'—|—1'—|—1'> h<'—|—1' 1)]
z |\ lz PR Solz | — Nz {1y o ly — 55z
Ay 27T 2'Y 2

1 . 1. . 1 . 1. 1
— A—Z[hy (zz+§,zy,zz—|—§)—hy (zz—%i,zy,zz—i)ﬂ
(2.2.90)

1 1
wey | 1,0y + =,1, | = — —
y( Y2 ) eyy(zw,zy—l—%,zz)

1 o 1 . 1 o 1 . 1
|:A—Z |:hz (Zzazy + 5722 + 5) - hz (Z:Eazy + 5722 - 5):|
1 o1 1 o1 1
- A—l' [hz (Zz + iazy + 5722) - hz (Z:v - iazy + 5722)]}

(2.2.91)
(. . .+1) 1
we, (g, by, 1, += | = — :
Y ezz(lmyzyalz—i_%)

1 o, ] .10
= (gt g) = (- 3= 5)]

1 o 1. 1 o 1. 1
- A—y {hw (Za:azy—’_ 5’22 + 5) - ha: (Za:aly - 5,23 + 5)]

Discrete form of eq. (2.2.88) is given by the following equations:

b ( , +1 : +1) 1
Whg | 1g,2 —, 1 = = . - :
Y 2 2 Mzz(lmazy"’_%alz—i_%)

1 o 1 . .. 1 .
[E [ey (zx,zy + 5,22 + 1) — ey (zz,zy + 5’22)}
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1 { ( 41 +1) ( . +1)]
- €z |1z, y Uz =) T €z | g, Uy, 1z a
Ay v 2 v 2

1
. 1 - . N
fyy(iz + 5,1y, iz + 3)

€z |tz y byy Uz ol Zxal alz
Az Y 2 v 2
s (- 3 s lys Uy Zy,

(2.2.94)
b < +1 . +1 > 1
Why \ 1z T 5510 otz = . . N

272 paz(ic + 500y + 3, 1)

1 [ < +1 1 ) < +1 ) ﬂ
€z | 1z PR ylz | — €z |1y o bys 1z
Ay 27 27

1 . . 1 . o 1.
T As [ <%+ byt 5) ~% (* 5)”

(2.2.95)

.
why<zx—|—§,zy,zz+§> =

Boundary conditions Again, for simplicity it is assumed the the domain is bounded
by a perfect electric conductor coinciding with the nodes corresponding to the tangential
electric field components.

Matrix eigenproblems Egs. (2.2.90)—(2.2.95) may be written in the form of a matrix
eigenproblem with eigenvalues w and eigenvectors

e
h

i = le 5 LE ] (2296)

where e, h are vectors of, respectively, electric and magnetic discrete field components.
Simple modification leads to the following eigenproblems:

I~

w

u)2

= éehéheg (2297)
= LpeLenh (2.2.98)

= o

with eigenvalues w? and eigenvectors, respectively, e and h .

2.2.4.2 Deterministic problems

In a similar manner, we may derive a matrix equation associated with deterministic prob-
lems, i.e. when sources are present in the analyzed domain. Restricting the considerations
to 3D problems, this equation takes up the following form:

Wl ee _L eh e .] e(w)
= = =| < 2.2.99
[ —Lne wlpn ] [E 1 [lm(w) ( )
where [ .. and [ ), are the unit matrices and j .(w), j m(w) represent, respectively, electric

and magnetic source currents. Eq. 2.2.99 is a system of linear equations which may be
solved for every given frequency using a numerical solver.
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2.3 Accuracy of finite difference methods

With basic finite difference schemes established we may now turn to the question of error
introduced by the discretization. Before examining this matter in greater detail, let us
make an observation that will facilitate the discussion. As noted in sec. 2.2.3.4, the leap
frog scheme can be related to the basic second order algorithm discussed in sec. 2.2.3.2.
This relation was found useful in deriving the stability condition. Let us look at the FD-
TD method from this perspective to relate it to the FD-FD technique. Assuming o = 0,
FD-TD is reduced to one of the equivalent forms (2.2.50) or (2.2.51). Comparing these
equivalent forms to the equations (2.2.97) and (2.2.98) derived for the FD-FD we may
note that they are very similar. In fact substituting

82_ 5

53 = W (2.3.1)
u &L F (2.3.2)

v & F (2.3.3)
M = —Ly (2.3.4)
N = L (2.3.5)

we pass from (2.2.50) to (2.2.97) and from (2.2.51) to (2.2.98). This indicates that we can
analyze together properties of FD-TD and FD-FD, if a relation between results provided
by one algorithm and the other is established.

To this end, let us consider the accuracy of the second order finite-difference algorithm
for the equation:

0* 5
~53 (1) = 2 f(7) (2.3.6)

This equation has two general solutions: sin(art) and cos(a7). Discretizing it for the first
of these solutions, we get:

1
A [sin(ar + aAT) — 2sin(ar) + sin(ar + aAT)] = a* sin(ar) (2.3.7)
-
Since the left hand side only approximates the second order derivative, it was necessary
to replace o? with and approximate value a?. We shall now find the relation between
a? and the true value o®. Applying simple trigonometric transformations to the above

equation, we get:

1
s [sin(ar) cos(aAT) + cos(at) sin(aAT)  —
2sin(ar) +
sin(ar) cos(aAT) — cos(aT) sin(aAT)] =
—% sin(at) [cos(aAT) — 1] = a&*sin(ar) (2.3.8)

from which we get:
. 2 cos(aAT) — 2
2= 2.3.9
“ AT? ( )

This equation may be solved for « yielding

arccos(1 — ATT%‘Q)
= 2.3.10
a A (2.3.10)
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The above equations have important implications both for establishing the relation
between the FD-TD and FD-FD and the analysis of error in the finite difference schemes
involving second order differential operators. Let us say a few words about the first one.
Substituting w? for a? gives the formulas which allow one to calculate the FD-TD results
corresponding to any particular frequency from FD-FD results or vice-versa (provided the
space discretization operators are the same). Let us note that equation (2.3.10) is identical
to equation (2.2.37) which was used to derive the stability condition of the explicit update
scheme.

In the same manner, we may use equation (2.2.25) to perform the analysis of an
analogous error involved in the first order differential operator:

arcsin(Ata)
= —— 2.3.11
a A (2.3.11)

2.3.1 Numerical dispersion

Inaccuracy which is described by relations such as (2.3.9) is called the numerical dis-
persion. This type of error is associated with numerical dispersion. It depends on the
finite difference formula used to approximate a differential operator and decreases with
decreased discretization step. Figs. 2.3.1 and 2.3.2 show the result of dispersion for the
first and second order operators approximated via central difference formulas.

YA o

Figure 2.3.1: Dispersion error associated with the finite difference approrimation to a
first order differential operator. The stability condition in explicit update algorithms is
|ATa| < 1.

From the figures, it is seen that the error level depends both on A7 and a. In compu-
tational electromagnetics a has often the meaning of a wavenumber. Hence, the product
of AT« is inversely proportional to the number of discretization points per wavelength.

In this section, we shall analyze the bounds for the error associated with various
discretization schemes for ordinary and partial differential equations which are of interests
from the viewpoint of computational electromagnetics. Only algorithms involving second
order operators will be discussed. In sec. 2.3.1.1, we derive the error bounds for two sample
algorithms. In sec. 2.3.1.2, we point out the final results for the rest of the algorithms of
interest.
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Figure 2.3.2: Dispersion error associated with the central finite difference approzimation to
a second order differential operator. The stability condition in explicit update algorithms
is |[Atal < 2.

2.3.1.1 Analysis of the dispersion error

We start with the derivation of the magnitude of the dispersion error for a central finite
difference approximation to a canonical second order differential operator. To this end,
we use eq. (2.3.9). Assuming that A7« is small enough, we may simplify this equation
by substituting cosine function with the first three terms of its Taylor series expansion

about 0: N "y
2(1_&_1_&)_2

&%~ — 2 As 24 (2.3.12)
and finally we get:
QA 2
&2 ~ o? (1 _— 127 ) (2.3.13)

The above formula implies that the solution of the eigenvalue problem using the dis-

cretization scheme for the second order derivative results in eigenvalues which are lower

than the analytical ones. The error has a constant sign and its relative value is expressed

by the following relation:

a?AT?
12

(2.3.14)

eITy2 ™~ —

Relative error for o Note, that err,z is the relative error for . Let us find more

practical parameter err, which is the relative error for «, i.e. it satisfies the following
definition:
a = a(l+erry,) (2.3.15)

Squaring both sides of this equation gives:
a* = a®(1 + 2err, + err?) (2.3.16)

We may now compare this equation with the equation defining err,z:

2 = a?(1 + errye) (2.3.17)

Q
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This gives:
€T,z = 2ert,, + err> (2.3.18)

Since only relatively small errors are of practical interest, we may skip the last term in
this equation. This leads to:
err, =~ 0.5err,2 (2.3.19)

From this and (2.3.14), we finally get:

o’ A2
24

(2.3.20)

err, ~ —

Wave equation In the next step of the analysis of the numerical dispersion we pass to
the operators emerging in the computational electromagnetics. To this end, we consider
the wave equation! which, for a wave propagating in a homogeneous medium, may be
represented by the following operator:

0? 0? 0? 0?
—pe—()=———=()— =—() — =—( 2.3.21
pega() = =550 = 550 = 550) (2321)
From the separation condition we get the following analytic dispersion relation:
pew® = B2 + 85 + 67 (2.3.22)

where w is an angular frequency and 3, §,, 8. are propagation constants in direction z,
y, z respectively. We may now note, that the discretization of the domain with respect
to a variable leads to the substitution of the corresponding derivative in (2.3.21) by the
second order central difference. According to the analysis performed above, this leads
to the error in the corresponding eigenvalue in the characteristic equation (2.3.22). The
corresponding variable is therefore affected by the relative error defined in eq. (2.3.14).
Depending on the variables which are discretized in a particular finite difference method,
we may expect different numerical dispersion errors. We consider the following cases:

1. Frequency domain formulation, two spatial derivative operators are discretized, the
third one is evaluated analytically, the unknown is w (i.e. a 2D problem of finding

wvs. eg. (3,)

2. Frequency domain formulation, two spatial derivative operators are discretized, the
propagation constant in the third direction is regarded as the unknown (i.e. a 2D
problem of finding e.g. 3, vs w)

3. Time domain formulation, two spatial and time derivative operators are discretized,
the third spatial derivative is evaluated analytically, the unknown is w (i.e. a 2D
problem of finding w vs. e.g. 3, by means of an explicit update algorithm in time
domain)

4. Frequency domain formulation, three spatial derivative operators are discretized,
the propagation constant in one direction is regarded as the unknown (i.e. a 2D
problem of finding e.g. [, vs w by means of an explicit update algorithm in the
space domain)

IThe solution of Maxwell’s equations also satisfies the wave equation
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5. Frequency domain formulation, three spatial derivative operators are discretized, w
is regarded as the unknown (i.e. a 3D problem of finding w)

6. Time domain formulation, three spatial derivative operators are discretized, w is
regarded as the unknown (i.e. a 3D problem of finding w by means of the explicit
update algorithm in time domain)

Analysis of sample algorithm As an example, let us analyze in detail the first algo-
rithm from the above list, that is to say a 2D problem discretized in space and solved in
frequency domain. The corresponding discrete dispersion equation becomes:

pei® = B2 + B2 + B2 (2.3.23)
or in terms of the exact values and the relative errors:
pew? (1 + err2) = B2(1 + errg) + (1 + errgs) + 32 (2.3.24)
This leads to the equation:
pew? + pew?err, 2 = 32 + ﬁ; + 32 + Berrge + ﬁjerrﬁg (2.3.25)
Subtracting eq. (2.3.22) from this equation, we get:
pew’err 2 = [rerrge + ﬁjerrﬁg (2.3.26)

This gives the following formulae for err::

eIT 2 = —

e (B2 A% + 3,Ay%) (2.3.27)

It is obvious that this error depends on the direction of propagation. In order to find this
relation, we express (3, and (3, as follows:

Be = Bocose (2.3.28)
By = [Bosing (2.3.29)

where ¢ denotes the angle of the direction of propagation with respect to axis x, and [
satisfies the following equation:

3 =32+ B = pew® — 52 (2.3.30)
Putting (2.3.28), (2.3.29) into (2.3.27), we get:
eIT 2 = — & (Ax? cos® ¢ + Ay?sin’ ¢) (2.3.31)
¢ 12p1€w?

Let us now find the smallest and the largest values of this error. To this end, let us find
zero of the first derivative with respect to ¢ of eq. (2.3.31). This gives:

sin ¢ cos ¢(Az? cos® ¢ — Ay?sin? ¢) = 0 (2.3.32)

Eq. (2.3.32) has the following solutions:

¢ € {0°,90°,180°, 270} Y, |tang| = — (2.3.33)
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Putting (2.3.33) into (2.3.31), we find the smallest and the largest level of the numerical
dispersion error:

(new? — B2)° 1
err omin = — . 2.3.34
w2min Mer 12(%232 + AL%) ( )
2 _ 32)2 Az2. Ay?
eITyemax = e QﬁZ)  mex(Aa”, Ay’) (2.3.35)
pew 12
it N\
o \
oI . : |
//'1’)/ \\\y\\
N D/
~0.5 N t \fv\r /’//
1 T \\1 u./l/’ -

Figure 2.3.3: Magnitude of the relative numerical dispersion error [%] as a function of
the direction of propagation in 2D. 3, =0, f = 18GHz,v = ¢, Ax = Ay = lmm.

Relative error versus direction of propagation The above analysis shows that the
numerical dispersion error depends on the direction of propagation. It may be shown
also in the case of other finite difference algorithms of interest that the magnitude of
this error is the largest for the direction corresponding to the axis with the largest grid
step and it takes up its smallest value for the direction corresponding to the diagonal of
the finite difference cell in 2D or cube in 3D. As an example, we present the magnitude
of the relative numerical dispersion error as a function of the direction of propagation
in 2D grid in fig. 2.3.3. The data were calculated for propagation constant 3, = 0 at
frequency f = 18GHz in the vacuum (v = ¢) using a rectangular grid with the grid step
Azx = Ay = Imm. In this case, the ratio between the grid step and the wave length is
equal Az/A = 0.06. The numbers at the axes denote the error in percents. In our case,
the range of the error is about 0.6-1.2%.

2.3.1.2 Level of error for various algorithms

In the previous section, we analyzed in detail the numerical dispersion error for a sample
2D problem defined and solved in frequency domain deriving the error bounds of the
dispersion error. In this section, we give results for the remaining algorithms given on
the list. The detailed derivation is omitted as it proceeds along the same lines as in the
case already covered. Accordingly, here we present only the final equations for minimum
and maximum relative errors and the plots. For completeness, we include also already
described case.
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2D eigenproblems in frequency domain As discussed in the preceding section,
92 92 . . . . . . .
operators 3~ (.) and a—yQ() are discretized. The discrete dispersion equation takes up, in

this case, the following form:

2N ,2
ped? = 32 <1 . ﬁ§1A2ﬂ> . 55 <1 _ %) + 32 (2.3.36)

The analysis of this equation yields the following minimum and maximum relative errors
of w?:

(pew® = B2)? 1
eIT opainy = — 2L . 2.3.37
w=1N1n M€w2 12(%232 + AL?ﬂ) ( )
ew? — %) max(Az? Ay?
eITy2max = _(,u e ) : (12 ) (2.3.38)
B.Ah
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Figure 2.3.4: Relative numerical dispersion error for 2D eigenproblems in frequency
domain. Ax = Ay, Err, = 0.5%, 1%. See the explanations in the text.

In fig. 2.3.4, we present the dispersion characteristics versus frequency in a normalized
chart. We assume that the grid is rectangular, i.e. Ax = Ay = Ah. The figure shows
the range of 3, for a given frequency when the maximum level of the relative error of
frequency is assumed to be Err, = 0.5% and 1%. As an example, let us consider a wave
in the vacuum at frequency 10GHz analyzed using a rectangular grid of size Ah = 3mm.
This gives ®Ah ~ 0.63. We find at the chart the useful range of 3.Ah. For Err,, = 0.5%,
we get 5,Ah ~ 0.4-0.6 which gives (3, ~ 133—200% and for Err, = 1%: 5.Ah ~ 0.3-0.6
and (3, ~ 1007200%.

Frequency domain formulation of 2D problems solved for propagation con-
stant. In this case, two spatial differential operators are discretized and (3, is sought.
The discrete dispersion equation may be written as follows:

2 2
32 = pew® — 32 (1 e 3“2) ~ (1 e ) (2.3.39)

12 12
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from which we get the following minimum and maximum relative errors of 32:

(ue” = B2 |
erT poiny = = 2.3.40
pemin R T (2340
cw? — 32)? max(Ax?, Ay?
erTpmax = (p 7 )" max( = ) (2.3.41)
gAh | e
,r’/
I S
-0.2 \‘
jﬁZAh -1 — — — — L L 1
jeAh “2Ah

Figure 2.3.5: Relative numerical dispersion error for 2D problems solved in the space
domain. Ax = Ay, Errg, = 0.5%, 1%.

Fig. 2.3.5 presents the dispersion characteristics versus propagation constant in a nor-
malized chart for Az = Ay = Ah. giving the range of frequency for a given propagation
constant and the maximum level of the relative error Errg, = 0.5% and 1%

2]2:) explicit update scheme in time domain In this case operators %(.), 88—;(.) and
g—yQ(.) are discretized and w is evaluated by means of an explicit update scheme in time

domain. The discrete dispersion equation has the form:

~9 A 42 2A 2 2 A2
5 W2 At ) B2Ax ) B, Ay )
1— = 1— 1 ——=— 2.3.42
JLED < B ) By < o)t B, o )T B ( )
The minimum and maximum relative errors of w? are:
At2? (pew? — 52)° 1 (2.3.43)
err o= — . .3.
WA 12 — At202 frew? (12 — AP?@?) (507 + 52)
At?o? (pew? — B2)?  max(Ax?, Ay?)

" — — .. — 2.3.44
“Hlermax 12 — At2@? JLEw? 12 — At2@? ( )

Frequency domain formulation, 2D explicit update scheme in the space domain
. . . 82 82 82

used to find the propagation constant For this algorithm, 55(.), 52(.) and 55 (.)

are discretized and f3, is evaluated by means of an explicit update scheme in space domain.

The discrete dispersion equation takes up the form:

0 2 2
3 (1 _ ﬁzlA;Q> = pew? — 2 (1 - ﬁﬁgﬂ) L (1 - Bygy ) (2.3.45)
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with the following relative errors of 3,:

Az2 32 ew? — (32)? 1
O gmin = b e B ——— (2.3.46)
: 12 — A2232 b5 (12 = Az2B2) (57 + 32)
Az 32 (pew? — )2 max(Ax?, Ay?)
err = Z _— + X — 2.3.47
FEMAX T 9 A2 32 12— A2 (2.3.47)

3D problems (frequency domain) Three spatial derivative operators are discretized
and w is evaluated. The discrete dispersion equation may be written as:

pei? = 2 (1 - %) + 3 (1 - @) + 32 <1 - 53@%) (2.3.48)
The relative errors in this case are:
9 1
err opin = —Hew” - (L + A%,Q T (2.3.49)
eIT emax = —pew? - max(Az?, Ay®, Az%) (2.3.50)

12
The maximum level of the relative error of frequency for a rectangular grid (i.e. Az =
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Figure 2.3.6: Mazimum level of the relative numerical dispersion error in frequency for 3D
eigenproblems in frequency domain versus normalized frequency. (Ax = Ay = Az = Ah)

Ay = Az = Ah) is given in a normalized chart in fig. 2.3.6.

3D explicit update scheme (time domain) Here, all four operators (three with
respect to space and one with respect to time) are discretized and w is evaluated by
means of an explicit update scheme in time domain. The discrete dispersion equation is
the following:

~2 2 2 2 QA 2 2 2
116 (1—“’£t ) = 2 (1— ﬁzgx >+ﬁ§ <1—ﬁyl—2y> + B2 <1— leA; ) (2.3.51)
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with the relative errors:

APE? 2 ! (2.3.52)
err 3 = e ———— EW - .
smine =T ARG MY T 12T ARDY) (s T A )
A2 H? , max(Az? Ay? Az?)
ermax =y Apgs AT A (2:3.53)

Practical note The expressions for minimum and maximum relative errors presented
above include the exact values of, depending on the algorithm, w or (3., which are unknown
a priori. They should be substituted by their approximations @ or 3, respectively. Such
an approach is valid when the relative errors are small, which is the case in practice.

Correction of the numerical dispersion error The knowledge of the error bounds
for any particular algorithm is very useful as this allows one to minimize the average
error in the case where the propagation direction is not known. It was shown that the
calculated value & is placed between o(1 + err zpi,,) and (1 + errazmax), where o?
is the exact solution (either w? or 32 depending on the algorithm). In order to minimize
the mean value of the relative error, the following relation should be satisfied:

eIT 21in = —€ITa2max (2.3.54)

However, the analysis of the algorithms of interest shows, that this condition is not sat-
isfied in a general case. Therefore, the calculated values should be multiplied by the
following correction factor:

2
COITy2 = (2.3.55)
2 4 €I 21ip T+ eTe2max

The corrected value will be then:
~2 _ ~92

The new corrected value GZgpy is now placed between a?(1 — 0.5Aerr,2) and o?(1 +
0.5Aerr,2) where Aerr,: is defined as follows:

Aerrye = |eIToemax — €17 2pmip | (2.3.57)

and the mean value of the relative error is equal zero. The above analysis and eq. (2.3.19)
show, that the maximum level of the relative error with respect to « after correction is
equal:

Err, ~ 0.25Aerr,2 (2.3.58)

2.3.2 Other sources of errors

In the preceding sections we have established the upper and the lower bounds for the
numerical dispersion errors in several variants of finite difference methods. It is obvious,
that the numerical dispersion is caused by the discretization of the domain and cannot be
avoided. As the derived expression indicate, this error decreases with decreasing grid size.
In addition to the numerical dispersion there are also other factors related to discretization
which affects the accuracy of the final solution. In electromagnetics, the most important
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additional factors which have to be considered are the location of interfaces between media
and boundaries and the presence of singularities of the field.

While these factors contribute to the overall accuracy, magnitude of the errors can be
reduced either by the grid size reduction or an application of the field theory. The second
approach is by far more appealing because, if the additional errors are brought below the
numerical dispersion error without decreasing the grid size, the algorithm will have the
greatest accuracy which is theoretically possible.

In the following sections, we shortly describe the nature of errors other than the
numerical dispersion. Further in this work, new algorithms based on the field theoretical
analysis reducing these errors will be presented.

2.3.2.1 Boundary conditions

In practical simulations, one often encounters a situation when surfaces at which Dirichlet
or Neumann boundary conditions are specified do not coincide with the finite difference
grid. This introduces the error which often exceeds the level of the error due to the
numerical dispersion. Therefore, there is a need to locally change the standard finite
difference algorithm near boundaries. The algorithms reducing this kind of errors to the
order of the numerical dispersion are based on the integral form of Maxwell’s equations
and are derived in secs. 4.4, 4.5.

2.3.2.2 Interfaces between media

Boundaries between different media may also introduce an error whose magnitude is
significantly larger than the error due to numerical dispersion. Also in this case, algorithms
based on the properties of the electromagnetic fields at the media interfaces can be derived

reducing this error to the level of the numerical dispersion error. These algorithms are
described in sec. 4.2 (for 2D) and in sec. 4.3 (for 3D).

2.3.2.3 Field singularities

Electromagnetic field changes very rapidly in the vicinity of wedges and thin wires.
Accordingly, the assumption regarding the linear change of field within a cell is far from
being satisfied. In can be shown, that in the case of central finite differences, the local
truncation error in Taylor’s expansion is unbounded near singularities of the field intro-
duced by e.g. edges of metal laminas. This local error often significantly affects the
global accuracy of the computations. Therefore, if elements such as wedges, convex cor-
ners or thin wires are present in the analyzed domain, the standard expressions for the
finite-difference operators should be modified in order to account for a particular type of
singularity. A modified algorithm dealing with this problem is presented in secs. 4.6, 4.7.



Chapter 3

Symbolic space

3.1 Introduction

It was noted that time domain formulation (as some frequency domain ones) may be
solved by means of the explicit update algorithms. In order for these algorithms to be
stable the operators involved have to possess certain properties which, in the most general
case, are expressed by conditions (2.2.63) or (2.2.64). It has been proven [85] that these
conditions are satisfied for 3D Maxwell’s grid equations or in other words for a basic
discretization scheme in 3D using Yee’s mesh. It can be also easily proven that except for
the boundedness also continuous operators defined on appropriate domains satisfy these
conditions. However, in many cases, one is interested in 2D problems. Such problems
usually arise in the analysis of waveguides and lead to different operators for which these
properties have not been investigated. It was also pointed out that the basic discretization
scheme may result in an error which exceeds the level of the error due to the numerical
dispersion. The only reasonable way of controlling this type of error is via the local
modification of the operators. Obviously, in order to be useful, such local modifications
cannot change the properties of the entire operator. If this is not the case, then the
scheme becomes unstable or, at best, if only the spectral radius is increased as a result
of the modification, one may have to reduce the time step. Previous chapter showed
the equivalence of the time and frequency domain formulations. Obviously, if an explicit
update scheme is not used, the system of linear equations is solved and the problem of
stability does not come into play. One has to bear in mind, that the rate of convergence
of the iterative solvers depends on the properties of the underlying matrix, such as for
instance the spectral radius. As a result, changes introduced by local schemes to the
global operator are of importance both for frequency (FD-FD) and time domain methods
(FD-TD).

Intuitively, one may expect that a correctly constructed discrete operator, which either
incorporates local modifications or not, should guarantee that the laws of physics are pre-
served. Since these laws are related to the properties of the operators in the continuous
space there is a need of finding a common framework for construction of operator equa-
tions in continuous and discretized space. To this end, we introduce a new concept of
symbolic space. The symbolic space is the space where operators are expected to pos-
sess the same general properties in the continuous space and the discrete one. (With
the exception of boundedness — continuous operators are unbounded as they operate in
infinite dimensional spaces, discrete ones are bounded). Using the concept of symbolic
space we shall derive operator equations for 3D and 2D. These equations will be used for

45
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verifying the consistency of local subcell models which will be derived in the next chapter.

To derive the operators in the symbolic space for 2D and 3D cases it is enough to
consider only the eigenvalue problems that describe either the free oscillation (3D) or
guided wave propagation (2D). In general the second case refers to waveguides which
are structures uniform in one direction. This fact radically simplifies the analysis. The
solution provides the field distribution as a function of transverse coordinates, and a
propagation constant as a function of frequency (or the other way round). For waveguides,
Maxwell’s equations can be converted to an eigenvalue problem but there are several
possibilities discussed in sec. 3.5.3.

3.2 Formulation of a problem in 3D

In order to define operators required for the 3D analysis using the symbolic space we have
to consider the continuous space first. Let us write Maxwell’s equations in the continuous
space for a 3D problem:

(T\H

—0E+VxH = E+J
VxE = — Jwp - H
These equations may also be written in terms of flux density fields:
—oe ' D+Vxji B = juD+.J (3.2.3)
Vxel-D = —jwé
Let us also write Maxwell’s divergence equations:

=/
=0

U.Ul bl

\Y%
\Y%

3.3 Formulation of a problem in 2D

For the 2D problems we restrict the analysis to waveguides uniform in the z direction.
We assume that all materials in the analyzed structures are lossless. In order to simplify
analysis further, the fields are decomposed into transverse (denoted with subscript ;) and
longitudinal (denoted with ,) parts. The propagation constant and the angular frequency
are denoted with 3, and w, respectively. With these conventions, Maxwell’s equations in
terms of the intensity fields take up the form:

ot B | I H R | IR I CER
R TR = e e | L] eea

Similarly, in terms of the flux density fields, we get:

l —_vﬁjtﬁ-z% i 8 7, xovt(.) ] [ Dy Ui ] [ B, ] i gt ] (3.3.3)

l —_Vjtﬁz: i 8 —T. ><0Vt(.) ] l iti ;ﬁ ] l gi ] = —jw l gz ] (3.3.4)
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In the forgoing analysis, we also use Maxwell’s divergence equations, which for decomposed
fields take up the following form:

V. D;—jB.D. =
V, B, —jB.B. =

Since we consider only lossless materials, the following conditions are satisfied [13,53]:

=H _H =
€ Ext _ €t €tz
[H ] _ [ ] (3.37)
7H = —
[ Mtt Hzt ] _ [ Fag - Htz ] (3.3.8)
/‘Ltz lu:'z :uzt Mzz

Analogous relations are valid for tensors y and v.

3.4 Symbolic space for 3D problems

We may now introduce operators in the symbolic space for the 3D case. In this space,
we use common symbols for continuous and discrete basic operators, functions and sca-
lars which occur in the 3D problem. As the same continuous operators may be defined
for different boundary conditions, such an approach is only possible if we introduce the
boundary conditions of a particular operator domain to the symbols'. The new symbols
are given together with the continuous and discrete operators in tab. 3.4. Note that
cach differential operator is defined twice. One for the boundary conditions satisfied by
function E or D and for the second time for boundary conditions of function H or B. We
may now rewrite egs. (3.2.1)—(3.2.4) for the symbolic space:

—Se+ Rnh = jwEe+1
Ree —jwMh

and

—SE'd+ R M0 = jwd+i
R.E'd = —jwb

Egs. (3.2.5), (3.2.6) take up the following form:

D.d = r
Db =

!Care has to be taken when applying such operators to functions. Such operators can be applied only
to functions belonging to their domain.
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Table 3.4.1: Symbols of basic operators and functions in symbolic, continuous and discrete
spaces. Subscript . denotes boundary conditions of function E or D depending on the
operator, and subscript ., denotes boundary conditions of function H or B (see the text
for explanation).

‘ Symbol ‘ Continuous space ‘ Discrete space ‘

R V x (e R.
D, V- (‘)6 Qe
D,, V- ()m D,
Ge V(.)e G.
G, V{()m G
E g E
M i M
S o S
e E e
h H h
d D d
b B b
i J i
r p r

‘ <u,v > ‘ JIik% U-Vdv ‘ AxAyAz >, uv;

3.4.1 Properties of basic operators
We now derive properties of the 3D basic operators.
Rotation operator Let us start from the following property of the continuous rotation
operator:
V- UxV)=V.VxU-U-VxV (3.4.7)

This may be written in the integral form as follows:

///‘/V.Vxﬁdv:///‘/[j.vdev—i—///Vv.([j'X‘?)dv (3.4.8)

From the Gauss law, we have:

///\/V (U Vydv = //év(ﬁ x V) - iids (3.4.9)

where 0V is the boundary of the domain V. If we substitute for fields E , H , respectively,
vectors U, V' and assume that the domain is surrounded by the electric and/or magnetic
walls, the integral on the right hand side vanishes:

// (B x H) -fids = 0 (3.4.10)
5V
This gives the following property in the symbolic space:

R. = R}, (3.4.11)



Chapter 3 Symbolic space 49

Divergence and gradient operators We may note, that gradient operator does not
appear in the formulation of a problem in 3D in sec. 3.2. However, for completeness, we
introduce without a proof the following property of gradient and divergence operators:

V-()=-[VO* (3.4.12)

and extend it to the symbolic space as follows:
D. = —-GI (3.4.13)
D, = -Gl (3.4.14)

Operators corresponding to material tensors For lossless materials, the following
properties hold:

E = E” (3.4.15)
M = M” (3.4.16)

Other properties The following property is well known in the continuous space:
V:-Vx() =0 (3.4.17)
VxV() =0 (3.4.18)

We expand these equations to the symbolic space. From (3.4.17), we get the following
two equations:

DR, = 0 (3.4.19)

DR, = 0 (3.4.20)
Analogously, (3.4.18) leads to:

R.G. = 0 (3.4.21)

R,G, = 0 (3.4.22)

3.4.2 3D problems

Deterministic problems Maxwell’s equations written in the form (3.4.1), (3.4.2) or
(3.4.3), (3.4.4) with nonzero current i describe deterministic problems with i representing
sources. We may formulate such problems in a single equation. Combining eqs. (3.4.1),
(3.4.2) into a matrix-operator form we get the following 6-component formula:

[ I\Effsie ElR HZ]_J [ ]JF[E;Z.] (3.4.23)

Analogously, combination of (3.4.3) and (3.4.4) gives:

—SE-! d i
l—RE_l ]l ]—jwlb]-i—lo] (3.4.24)
Magnetic fields may be eliminated from the above equations. This way, we get 3-
component formulations:

E'RnaM 'Ree = w?e — jwE'Se — jwE™ (3.4.25)
RoM 'R.E'd = w?d— jwSE 'd — jwi (3.4.26)
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Nondeterministic problems With the absence of sources (i.e. for i = 0), the problem
becomes nondeterministic and the corresponding equations formulate an eigenproblem.
For instance, from (3.4.27), we get:

__1\?__1}8% E_;Rm ] l ¢ ] = jw l ¢ ] (3.4.27)

This equation represents an eigenproblem with eigenvalues jw and eigenvectors l Z 1

Nondeterministic problems for lossless structures Equations may be further sim-
plified if the medium is lossless. In this case S = 0, and operators E, M are hermitian.
From (3.4.25) and (3.4.26), we get:

E'RuM 'Ree = we (3.4.28)

Ru.M 'R.E'd = wd (3.4.29)
Analogously, we may now eliminate the electric field components from egs. (3.4.23) and
(3.4.24). In this case, we get the following 3-component eigenproblems:

M 'R.E'Rp,h = w?h (3.4.30)

R.E'R,M 1 = w? (3.4.31)
The pairs of eigenproblems (3.4.28), (3.4.29), and (3.4.30), (3.4.31) are transposed to each

other. For lossless structures without sources, eqs. (3.4.23), (3.4.24) formulate eigenprob-
lems, which are also transposed to each other.

3.4.3 Static solutions

It is easy to verify, that about one third of solutions of the problems defined in sec. 3.4.2
are static modes (i.e. solutions corresponding to w = 0). These solutions do not satisfy
Maxwell’s divergence equations (3.4.5) and (3.4.6):

Ded # r (3.4.32)
Db # 0 (3.4.33)
They may be written in the form:
e = Gole (3.4.34)
= GmUn (3.4.35)

where u., u,, are scalar fields. The static solutions may cause a problem when solving a
nondeterministic problem with some solvers, because it may be difficult to separate the
lowest order modes of interest. Note, that this is not a problem in the case of the FD-TD
method, since we may use sources without static excitation. In order to solve the problem,
we may shift zero eigenvalues, corresponding to the static solutions, in frequency. To this
end, we should modify the operators by adding new terms. These new terms cannot
have influence on the actual dynamic solutions. In addition to this condition, we will
assure that the part of the result operator corresponding to the actual dynamic modes
will not have influence on the shifted static solutions. Limiting our discussion to the case
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of the nondeterministic problems for lossless structures, we get the following new forms
of egs. (3.4.28), (3.4.29), (3.4.30) and (3.4.31):

E'RuM 'Ree + GoADEe = w?e (3.4.36)
RuM 'RE'd + EG,ADod = w?d (3.4.37)
M 'R.E'Ruh + GnAnDLMh = w?h (3.4.38)
RE'RuM 0+ MG,L,A, Db = w?b (3.4.39)

where Ae, A,, are arbitrary positive and symmetric operators defined in appropriate
spaces. If these operators are symmetric, the eigenproblems are in the same relations
with their transposals as before. It is easy to verify, that for A = % and A, = ﬁ, the
new term in each equation is positive and its spectral radius is approximately equal to the
spectral radius of the dynamic part of the global operator. Therefore, positiveness and
the norm of the global operator do not change. Solutions of the new equations contain
now spurious modes. In order to test if a solution is spurious (static) or dynamic we
should substitute it to one of the equations (3.4.28), (3.4.29), (3.4.30) or (3.4.31).

Similar approach to the static solutions, but with another form of operators A, A,
may be found in [7,16].

3.5 Symbolic space for 2D problems

Despite fewer dimensions it is necessary to consider more elementary operators in 2D
than in 3D. We introduce symbols of all the operators required in 2D in Tab. 3.5. Again,
subscript . denotes boundary conditions of function Et or D, depending on the operator.
Analogously, subscript ,, denotes boundary conditions of function H, or B,. For instance,
D¢, corresponds to a transverse divergence operator acting on functions that fulfill the
boundary conditions for an appropriate components of the transverse electric flux density
field. Symbol G¢. denotes a transverse gradient operator which acts on functions fulfilling
the boundary conditions for the longitudinal electric intensity field component. Similarly,
symbol Gy, denotes a transverse gradient operator corresponding to the magnetic field.

Let us now rewrite the equations presented in sec. 3.3 in the symbolic space.
Egs. (3.3.1) and (3.3.2) become:

Bl | I e R 250
[ e ][] [ Me Mel[] s

Egs. (3.3.3), (3.3.4) take up the form:
[ on | [N N ] 0] 8]y
Eea | R A P

From (3.3.5), (3.3.6), we get:

Dtedt_jﬁzdz =0
Dtmbt_jﬁzbz =0
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Table 3.5.1: Symbols of basic operators and functions in symbolic, continuous and discrete
spaces. Subscript . denotes boundary conditions of function E, or D, depending on the
operator, and subscript ,,, denotes boundary conditions of function H, or B, (see the text
for explanation).

‘ Symbolic space ‘ Continuous space ‘ Discrete space ‘

Dte vt : (')e Q te
Dtm Vt : ()m Q tm
Gte vt(')e Q te
Gtm Vt(')m g tm
Ze 7, X (L)e Z.
Z 2 X ()m L
Eqt Ent £ tt
Etz €tz g tz
Ezt €zt g zt
Ezz €2z é 2z
M ﬁtt % tt
Mtz Iatz % tz
Mzt ,azt % zt
M, fhzz M..
Fi Xet Ly
th )th £ tz
th )Zzt £ zt
F.2 Xz2 E..
Ni¢ Vst Q tt
Ntz Viy Q tz
N Vst N
sz Viz ﬁ 2z
€t Et €t
e E, €
hy ﬁt hy
h, H, h,
dy ﬁt dy
d. D, d.
bt ét b t
b. B, b,

<u,v > ‘ ﬂsﬁ Vs ‘ AxAy >, u;v;
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It should be emphasized, that the equations introduced above are more general than those
presented in sec. 3.3. Here we extended the properties valid in the continuous space, in
such a way that they are also valid in the discretized domain. Note, that up to this time,
we have not made any assumption regarding the method of discretization.

3.5.1 Properties of basic operators

In this section, we derive the properties of the basic operators defined above. Further on,
these properties will help us to transform operator equations and provide conditions for
constructing discretized operators.

Transverse divergence and transverse gradient operators Here, we establish con-
ditions under which the following property of the operators V; - (.), Vy(.) is satisfied:

Ve (" ==Vu() (3.5.7)

Eq. (3.5.7) implies, that for an arbitrary pair of scalar functions f and vector functions
U the following statement is true:

(V- T) == (V. 0) (3.5.8)

Operation < .,. >, in the above equation denotes the pseudo-inner product [53]. We use
the following property of operator V; - (.):

V- (fU) = fV,-U+U-V,f (3.5.9)

The pseudo-inner product (3.5.8) takes up the form:

[ 490 Ods == [ T ufds+ [[ Ve (7T (3:5.10)

In order to prove (3.5.7) we should show that the last integral in (3.5.10) vanishes. From
the Gauss law we have:

//SVt~(f(7)ds:/65 U - idi (3.5.11)

where 0.5 is the boundary of domain S and 7 is a unit vector normal to 6S. The integral
vanishes if for every point on 65 one of the statements is true:

f=0 or U-i=0 (3.5.12)

Eq. (3.5.12) defines the space of the pairs (f, (j) If the pair (f, ﬁ) belongs to one of the
spaces: (Hz,ét), (H,,7, x Et), (E,,7, X ﬁt), (E,, 51‘,), then for a combination of electric
and magnetic wall boundaries, condition (3.5.12) is satisfied. Therefore, the following
equations are true:

Die = —GL (3.5.13)
Dim = -Gl (3.5.14)
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Operator 7, x (.) It is well known, that the following property of operator 7, x (.) takes
place:

Zx()=—[%x () (3.5.15)

We extend this relation to the symbolic space as follows:
Ze =71 (3.5.16)

This equation also ensures that for real values of 3., the global rotation operators in
egs. (3.5.1) and (3.5.2) (or (3.5.3) and (3.5.4)) are hermitian transposed to each other:

_jﬁzzm _ZmGtm H: _jﬁ,:ze _Zthe (3517)
—DieZim 0 —DimZe 0 e

Furthermore, we may note that operator 7, X (.) is unitary, which means that its inversion
is equivalent to the transposition:

%o O] =[x ()] (3.5.18)

This and eq. (3.5.16) give:
7' = T (3.5.19)

e

Operators corresponding to material tensors We assumed, that we deal with loss-
less materials. This implied properties (3.3.7) and (3.3.8). Both equations may be written
in the symbolic space as follows:

Eg E{{Z o Ett Ezt
Mg Mg o Mtt Mzt
This also gives:
Fg Fg o Ftt th
Ng Ng _ Ntt Nzt
Other properties One of the basic properties of differential operators is
Vi T X V() =0 (3.5.24)

Expanding the above formula to the symbolic space, we get the following properties:

DinZeGee = 0 (3.5.25)
DeZmGim = 0 (3.5.26)
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Properties valid for homogeneous isotropic media If the medium is isotropic and
homogeneous, we may write the following relation:

Ei'ZmM,,'Ze = 0L (3.5.27)

where v denotes the wave speed and Iy is the identity operator defined on the transverse
fields. This condition is based on the formulations presented in sec. 3.5.3 and guarantees
that the propagation constant and the frequency are related to each other by the following
equation:

w? — wd = v*3? (3.5.28)

where wy is the cutoff angular frequency of the corresponding mode.

Final comment All the properties presented above may be seen as constraints on the
construction of discrete operators. However, as will be shown in the next sections, all
these properties will be satisfied, in a natural way, as a consequence of the field behavior,
Maxwell’s equations and Yee’s grid.

3.5.2 Construction of real operators

Equations presented at the beginning of sec. 3.5 may, in general, lead to formulations with
complex operators. This will be the case, for instance, when real value of 3, is treated as
a parameter. This situation will further lead to matrix equations with complex matrices.
Solving of complex equations requires more computation time and computer memory
than in the case of equations with real matrices. Therefore, it is useful to reformulate
our equations in such a way that they will lead to equations with real operators. It is
obvious, that such reconstruction is not possible in a general case (for instance complex
value of parameters (3, or w, complex operators arise from material tensors). However, it
is possible in the most common situations. Such situations include problems with a real
or imaginary parameter 3, or a real or imaginary parameter w. An appropriate character
of the operators arisen from the material tensors is also required in these cases. Let us
derive the new equations.

It is easy to verify, that egs. (3.5.1) and (3.5.2) may be written in the following manner:

_]mﬁzzm _ZmGtm nht s Ett mEtz meq

[ —DieZm, 0 mnh,| Jnw m*'Ey E,, e, (3.5.29)
_jm*ﬁzze _Zthe meg _ . % Mtt m*Mtz nht
[ —DimZe 0 e.| —nw mM M,, | |mnh, (3.5.30)

where m, n are parameters taking values 1 or 4+j. In the same way we may rewrite
egs. (3.5.3) and (3.5.4):

_]mﬁzzm _ZmGtm Ntt m*Ntz nbt . mdt
[ "DiZm 0 | |mNy N |mmb,| = || @53V
_jm*ﬁzze _Zthe Ftt mth mdt g% nbt
l "DenZe 0 | |mFu  Ful| o] = T |np,| G532
Egs. (3.5.5), (3.5.6) take up the form:
Dtemdt — jmﬁzdz =0 (3533)

Dimnb; — jm*B,mnb, = 0 (3.5.34)



56 Fast finite difference numerical techniques ...

Table 3.5.2: Values of parameters m, n and the corresponding character of 3,, w and
operators corresponding to material tensors in the formulations with real operators. The
rest of the basic matrices must be real.

m n ﬁz w Etza Ezt> Mtz> Mzt
+1 | £1 | imag. | imag. real

+1 | £5 | imag. | real real

+j5 | £1 | real | imag. imag.

+5 | £7 | real real imag.

Table 3.5.2 shows the values of parameters m and n and the corresponding character
of (., w and operators arisen from material tensors. Assuming that the rest of the
basic operators are real, the choice of the parameters according to this table will lead
to formulations with real operators.

Example As an example, let us rewrite egs. (3.5.29), (3.5.30) for real values of 3, and
w. We substitute m and n by j and get:

Bzzm _ZmGtm jht - Ett jEtz jet
[_Dtezm O _hz N v _jEzt Ezz €z (3535)
—f.le —ZeGue| |Jer| _ _ M —jMe,| |
[_Dtmze O € N w jMzt Mzz _hz (3536)

In this case, operators Ey,, Ez¢, My, M,¢ must by strictly imaginary? and the rest of the
basic operators must be real. Note, that also egs. (3.5.1), (3.5.2) lead to formulations
with real operators, if 3., w are both imaginary and all the basic matrices are real.

3.5.3 Eigenproblems

The operators defined in the symbolic space render the manipulations of Maxwell’s equa-
tions much easier. In this section we shall present a whole class of eigenproblems which
can be derived from Maxwell’s equations. (The derivation may be found in app. A).

The eigenproblems presented here are based on the approach proposed in sec. 3.5.2
with parameters m and n. Such an approach enables one to construct equations with real
matrices in the most common cases. In order to make our discussion more clear when
referring to the equations, we assume that 3, and w are real. In other words, we assume
that parameters m and n are both set to j (according to tab. 3.5.2).

The simplest form are the most general six field component formulations presented in
tab. 3.5.3. If 3, is treated as a parameter, the eigenvalues are w and the right eigenvec-
tors are vectors containing all the intensity field components. The left eigenvectors, or
eigenvectors of the transposed eigenproblem, are vectors containing all the flux density
field components. If w is a parameter, the eigenvalues are (3., the right eigenvectors are
the same as in the previous case, but the left eigenvectors are different and contain only
the transverse field components of the intensity fields.

The solutions of the problems with six field components contain static modes which do
not satisfy conditions (3.5.5), (3.5.6). These solutions may be removed by eliminating the

2This includes the case of strictly bidirectional structures, where these operators vanish.
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Table 3.5.3: 6 field component w and 3, formulations for general anisotropic waveguides.
Fields with subscript . correspond to w = wf, B, = B%. (such substitution must be per-
formed for both, parameter and eigenvalue).

Eigenproblem Parameter | Eigenvalue Eigenvector
right ‘ left
[ megw] Mdipx
[LO + (]n*w)Lw+ S - €2k dzk;*
GmBoLglu=0 | JTP | dne nhy by
Lmnh. | mnb .
[ megy] —ZiV s
- - (9 0
Lmnh. | 0
[ 0 —Z6Gio 0 0
L. — —DimZe 0 0 0
o - 0 0 0  ZmGm
| 0 0 DicZm 0
[ 0 0 My m*My,
L - 0 0 mM, Mg,
w n’Ey n?mEs, 0 0
| ’m*E,; n’E,, 0 0
[ —Ze O 0 0
0 0 0 0
Ly = 0 0 m2Zy 0
0 0 0 0

longitudinal field components from the most general eigenproblems. This leads to four
field component formulations. The formulation presented in tab. 3.5.4 has parameter (3,
and eigenvalues w?. The eigenvectors contain the transverse flux density field components.
In the formulation from tab. 3.5.5, the parameter is w, the eigenvalues are 3% and the
eigenvectors contain the transverse intensity fields. If (3, is a parameter, we may further
reduce the number of field components. This produces two eigenproblems with two field
components (see tab. 3.5.4). The eigenvalues in these cases are w? and the eigenvectors
are the transverse electric or transverse magnetic flux density fields.

Elimination of electric or magnetic fields from the general formulation with six fields
leads to the formulations with three field components (tab. 3.5.6). However, these formu-
lations also contain static solutions. The parameter in these case is 3, and the eigenvalues
are w?. The eigenvectors are all three components of the electric or magnetic fields.
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Table 3.5.4: 4 and 2 field component w and w? formulations for general anisotropic waveg-
uides.

Eigenproblem Parameter | Eigenvalue Eigenvector
right | left
{ 0 Ldb | mdt
Lbd 0 Tth C C ok mdtk Zmn*btk*
= (jn*wy) md; i e l nbu, 1 [ —Ziem” di 1
nby
—n?LabLpad: = w?d; Jm* B3, wi dy, L by
—n?LpaLapb: = w?b; Jm* 3, wi by, /R
La, = —m*n°Zy,m*NeDim
— n2ZnGemmN it
- jml*ﬂz n2 Zm GtmszDtm
- jmﬁZHQZmNtt
Lbd = m ZemthDte
+ Zthem*th
+ ﬁztherthe
+ jm*ﬁzzeFtt

Table 3.5.5: 4 field component 3, formulation for general anisotropic waveguides.

Eigenproblem Parameter | Eigenvalue Eigenvector
right ‘ left
{ Lee Leh | meg
Lhe Lnn | | nhy | intw i B [ megy, 1 [ Loy iy 1
_ (jmB.) mey z nhy, —Ziem*epen
= nhy
Lee = GteEgzlm*Ezt
— Zpmm*™MM_ D, Ze
Leh = jn%GteEz_leteZm
— N Wy Myy
+  jn*wZpm* MM, tmM,,
Ly = —jn%wmQGthz_lethe
+  jnwm?ZeEqg
—  jnwm*ZemEgE_Im*Ey
Lin = mQGthz_zlmMzt
— m?*ZemEGE, 'DieZn,
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Table 3.5.6: 3 field component w? formulations for general anisotropic wavequides.

Eigenproblem Parameter Eigenvalue Eigenvector
right | left
FRuNR.e = w'e jm* . Wi [ en 1 l i 1
€2k dzk*
NR.FR, h = a)2h m*ﬁ w? htk btk*
e m/t — J z k thk mek*
_ _jmﬁz Zl’n _Zm Gtm o Ftt th
Rm B [ _Dtezm 0 F = th FZZ
_ _jm*ﬁzze _Ze Gte o Ntt Ntz
Re _ ’V _Dthe 0 N = Nzt sz

Table 3.5.7: 4 field component w3, and w? formulations for strictly bidirectional waveg-

uides.
Eigenproblem Parameter | Eigenvalue Eigenvector
right ‘ left
2 meg | _ 2 ' x meiy Zin 1" g
(wLy2 + Lo) [ nhy ] = w m*n*wy B [ nha 1 l Zomren.
. % me; - 9 Mey Mdyps
m*n*w(, l nh, 1 m*n*w(, wj, l ha 1 l by 1
L o O —n2Ztht
W T m2ZeEy 0
L . 0 —HQGteEgleteZm
0 M?GmM, Dy Ze 0

Table 3.5.8: 4 field component wB, and (3% formulations for strictly bidirectional waveg-

uides.
Eigenproblem Parameter | Eigenvalue Eigenvector
right ‘ left
2 mdt - 2 . % mdtk Zmn*btk*
(ﬁzLﬁ2 _'_LO) l nb; ‘| - ﬁz mmn wkﬁzk l nby ] l —Ziem* iy
. md, . 9 mdyy, MEyhe
m*n*w(, l b, ] m*n*w(, i l by, 1 l g ]
L 0 —n2Zm M
s m2ZEg! 0
L o 0 nzszth;letm
0 —?ZeGyeE ' Dye 0
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The equations may be simplified if the structure is strictly bidirectional. Four field
component formulations produce in this case eigenproblems presented in tabs. 3.5.7 and
3.5.8. One may note, that quantity w3, appears as a parameter or eigenvalues in these
formulations. If it is a parameter, the solution of the eigenproblem will produce the
dispersion characteristics in another coordinate system.

In strictly bidirectional waveguides, the number of field components may further be
reduced. Tab. 3.5.9 presents the formulations with only two field components.

In two special cases, i.e. at cutoff and in the static case, the equations may be reduced
to the scalar eigenproblems. These formulations are presented in tab. 3.5.10.

Table 3.5.9: 2 field component w? and (32 formulations for strictly bidirectional waveguides.

Eigenproblem | Parameter | Eigenvalue | Eigenvector
right | left
Laad: = w2dt 53 w;% dyy; Zin by
Lpnb: = UJth ﬁ? w;?; b Zedyg;s
Leee: = ﬁ?et w? zk Ctk Zin g
Lo = ﬁ?ht w? z2k P Zeeys
Laa = —ZuMy ZE
+ ZmGthz_letheE[tl
4+ ZmMg'ZeGioE; Dy
Ly = —(*ZEy'ZuMy
4+ ZoGteE, Dy ZmMy,!
+ ZeE;ﬂlZmGthz_letm
Lee = _w2zthtZeEtt
— ZuMyGraM D Z
4+ GieE,, DicEgt
Lih = —wZcEwZy, My
- ZeEttheEz_leteZm
+ Gthz_lethtt

Table 3.5.10: Scalar w? cutoff and 3? static formulations for strictly bidirectional waveg-
uides.

Eigenproblem Parameter | Eigenvalue | Eigenvector

right | left

E;leteZmMa;lztheez = WQ@Z ﬁ? =0 wlg €2k dzk;
M, 'DimZoEiy Zn Gimh. = w?h, B2=0 w? hoe | bk
E;leteEttheez = ﬁgez w? = 0 3[@ €2k dzk;
Mz_lethtthmhz = ﬁghz w2 =0 gk hzk bzk
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3.6 Discretization of 2D basic operators

In sec. 3.5.3, we developed different eigenproblems based on Maxwell’s equations which are
suitable for the analysis of waveguides. All these equations are defined in terms of a few
basic operators. Since we extended the definition of the basic operators by introducing the
symbolic space, all these equations are valid in continuous space as well as in the discrete
space. However, up to this time, nothing has been said about the construction of the
discrete basic operators. We discuss it here for all operators defined in Tab. 3.5, using the
properties derived in sec. 3.5.1. In this section, we present the form of discrete matrices
in the homogeneous parts of the domain. Inhomogeneities are discussed in chapter 4.

3 4 3 4 2
o o d o o C 03330 Cq
y4 z . -
X X 3t X 14
~ ~
o o o o 03330
1 2 1 2 1
i i
D, G Z Z,
A 1
4 2 4
o > 0 dt 03330 et O NN o\ bt
> 2 2 > >
rAAX DDA 30 X M4 1> X 22
1 > 2 » » > >
o 3 0 0330 oMM A0
35 1 3

Figure 3.6.1: Fragments of 2D Yee’s grid corresponding to the domains and ranges of
matrices Dy (a) Gy (b) and Z., Z, (c). Numbers in the figures denote position of
vector elements associated with the nodes in the corresponding vectors.

Discretization of functions The form of the discrete operators depends on the app-
roach used for the discretization of the fields. The fields are discretized to form Yee’s mesh.
This means that if the relation between two fields is expressed by the first order differential
operator, the grids corresponding to these fields are shifted with respect to each other by
half a cell size. This enables one to use the central difference scheme when discretizing
the differential operators. Moreover, the grids corresponding to different fields differ by
the integration paths in the integral interpretation of the grid equations®. For instance,
vectors d; (discretized transverse electric flux density) and d, (discretized longitudinal
electric flux density) are related to each other by the discretized version of eq. (3.5.5):

jﬁzdz :Qtedt (361)

3See sec. 2.2.2.
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Since we use the central difference scheme to discretize the electric transverse divergence
operator, nodes* d, are shifted by a half of the cell size with respect to nodes d;. Moreover,
the integration paths corresponding to nodes d; go through the points with the equal
distance from the closest nodes d,. This situation is presented in fig. 3.6.1(a). The
domain (d;) and the range (d,) of operator D are denoted with red color. The arrows
denote direction of the vectors.

Let us now consider the case of the discrete electric intensity fields e;, e, and discrete
electric transverse gradient G . (fig. 3.6.1(b)). The relation between both fields may be
formulated in the static case as follows

ey = —ﬁgmﬁz (3.6.2)
The central difference procedures require in this case that nodes e; are shifted by a half of
the cell size with respect to grid e,. From the integral interpretation of the grid equations
it follows that the integration paths of field e; go through points between two closest
elements e,. One may note, that in general this has not to be the straight lines. This fact
will be used when presenting the local schemes (chapter 4) where some of the cells will
be deformed. In the homogeneous parts of the domain, however, there is no reason to use
the integration paths different than the straight lines.

If we now look at the example of operators Z., Z,,, we may note that they only
change the direction of the vectors. This means, that the grids and the integration paths
are the same in the domains and ranges of these operators (see example in fig. 3.6.1(c)).

Fig. 3.6.2 presents the grids for all the discrete fields together with the basic operators
with denoted domains and ranges. Different integration paths for the transverse fields may
be seen in this figure. In particular, one may note the difference between the integration
paths of the flux density and intensity fields. This implies, that the material matrices are
simple diagonal operators with the elements being the material constants only if the field
variation within a single cell is close to linear. Otherwise, these matrices may have more
complicated, even nondiagonal forms. We present such cases in chapter 4.

Discretization of operators In order to derive the basic operators let us consider the
case of the electric transverse gradient. Let us use the continuous form of eq. (3.6.2)
written for component F,

1 0
E,=———F, (3.6.3)
JB. Ox
We discretize this equation using the central difference approach and write it for node 1
of the transverse electric field from fig. 3.6.1(b)

11
Ey=——
H j@zm(

This equation defines the row of matrix G corresponding to node Ej. The part of
matrix G4 corresponding to all nodes from fig. 3.6.1(b) has the following form:

B — E.) (3.6.4)

—Az7! Azt 0 0
0 0 —Az7! Azt
gte - —Ay_l 0 Ay_l O (365)
0 —Ay1 0 Ayt

4We use term nodes for the differential interpretation of the grid equations. Each node has a corre-
sponding integration path or area associated with the integral interpretation.
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Discrete fields and operators in the finite difference method for 2D structures.
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One may note that every row of this matrix contains all the nonzero elements of the global
operator. Location of these elements in the global matrix depends on the numbering of
the nodes. In general, if node E, has number m in vector ¢; and node F, has number n
in vector e, the element of matrix G4 corresponding to the interaction between these
nodes will be located in m-th row and n-th column. In the same way we derive discrete
magnetic transverse gradient G ¢,.

An analogous procedure may be performed in order to define matrices D ¢, D ¢,. We
get operators of the form D = —G ] and D, = —G1,, satisfying conditions (3.5.13)
and (3.5.14).

In a similar manner, we may derive matrices Z. and Z,,. The fragments of these
matrices corresponding to the nodes from fig. 3.6.1(c) have the following form

0 010 0 010
0 001 0 001

ée = -1 0 0 ém = 1 00 0 (366)
0 -1 00 0 -1 0 0

Material matrices which correspond to the material tensors are, in the homogeneous parts
of the domain, diagonal with elements being the material constants at the corresponding
point.

3.7 Discretization of 3D basic operators

Analogously, we may discretize basic operators in 3D.

hg o= e

(a) (b)

Figure 3.7.1: Fragments of 3D Yee’s grid corresponding to the domains and ranges of

matrices R, (a) and R, (b).

Discretization of functions The fields are discretized to form 3D Yee’s mesh. As
in the 2D case, the discretized fields differ by position of nodes and by the areas of



Chapter 3 Symbolic space 65

(a) (b) (c)

Figure 3.7.2: Fragments of 3D Yee’s grid corresponding to the domains and ranges of
matrices D . (a), G. (b) and A. (c).

integration. For instance, relation between vectors b (discretized magnetic flux density)
and e (discretized electric intensity) may be written as follows.

—jwb = R.e (3.7.1)

The electric rotation operator is discretized using the central difference scheme. Therefore,
nodes b must be shifted in space versus the corresponding nodes e. In particular, nodes b,
are shifted by a half of the cell size with respect to nodes e, e,. The same is true for nodes
b, with respect to e, e, and for b, with respect to e,, e,. Moreover, the integration paths
of nodes e determine the integration surface of the corresponding node b in the integral
interpretation of the grid equations. This may be seen in fig. 3.7.1(b). Four integration
lines of four nodes e determine the integration area of cell b.

In order to get discrete representations of operators De, D,,, we also need to define
their ranges. These are spaces of scalar functions, respectively, v, and v, defined as
follows®:

v = Ded (3.7.2)

Uy = Dpb (3.7.3)

The domains of operators D, Dy, are, respectively, spaces {d} and {b}. Analogously, we
define domains of operators G, G, as spaces of scalar functions e, wy,:

e — Gele (3.7.4)

h —— Gmim (3.7.5)

The ranges of these operators® are, respectively, spaces {e} and {h}. Since operators, D,
and G, will be discretized using the central difference scheme, discrete scalar nodes .,

®We use these functions to define the spaces. Note, that the equations are equivalent to (3.4.5), (3.4.6).
6Note, that expressions (3.7.4), (3.7.5) define the static solutions according to eqgs. (3.4.34) and (3.4.35).
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Um

ndl

(a) (b)

Figure 3.7.3: Fragments of 3D Yee’s grid corresponding to the domains and ranges of
matrices D ., (a), G, (b) and A, (c).

v, are shifted in space by a half of the cell size with respect to the neighbor pairs of nodes
€s, €y, €, (or dy, dy, d,) This is shown in fig. 3.7.2(a) and (b). The figure also shows
the integration areas corresponding to the nodes in the integral interpretation of the grid
equations. Note, that the integration surfaces corresponding to nodes d,, d,, d. define
the integration volume corresponding to nodes v, as shown in fig. 3.7.2(a). Fig. 3.7.2(c)
presents domain and range of matrix A . being a discretized version of operator A defined
in sec. 3.4.3.

Analogously, we may define grid of discrete nodes u,, and v,, with a half of the cell
size shift with respect to nodes hy, hy, h, (or b, b,, b,) as shown in fig. 3.7.3.

Fig. 3.7.4 presents the grids corresponding to all of the discrete 3D fields. The figure
also shows the discrete operators with their domains and ranges. As in the 2D case,
differences between integration areas may be seen. In particular, we may note differences
between the integration areas for the flux density (surfaces) and intensity fields (lines).

Discretization of operators Let us write eq. (3.7.1) for node B, in the continuous
space:

. 0 0

This equation may be discretized using the central difference scheme:

E, (3.7.6)

. 1 1
—jwb, = <A—Z(e$2 —€z1) — A—x(ezg — 624)> (3.7.7)

where the nodes correspond to fig. 3.7.1(b). From the above equation, we get all nonzero
elements of sparse matrix R, corresponding to node b, from the figure.

=

e=[ -0zt Azt —Art Azt (3.7.8)
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The rows of matrix R, correspond to nodes b and the columns correspond to nodes e.
Analogously, we may define nonzero elements of matrix R,, corresponding to the nodes
from fig. 3.7.1(a):

R, = [ Ayt —Ay™t Azt Az } (3.7.9)

In the same manner, we derive matrices D, and G.. Nonzero elements of these
matrices corresponding to the nodes from figs. 3.7.2(a) and (b) are:

D, = [ ~Az7! Azt Ayt Ayt Azt A } (3.7.10)
~Az7! Azt 0 0
G, = | —ayt 0 Ayt 0 (3.7.11)

—Az ! 0 0 Azt

Nonzero elements of operators D ,,, and G ,,, corresponding to the nodes from figs. 3.7.3(a)
and (b) look in the same manner.

Like in the case of 2D basic operators, the material matrices in the homogeneous parts
of the domain are diagonal. The elements of these matrices are simply the values of the
appropriate material constant at the corresponding point.

One may easily verify, that the basic operators defined this way satisfy all the condi-
tions derived in sec. 3.4.1.
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Figure 3.7.4: Discrete fields and operators in the finite difference method for 3D structures.
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3.8 Stability of 2D explicit update schemes

As shown in sec. 2.2.3, every eigenproblem has its potential counterpart in the form of
an explicit update scheme. In particular, all formulations presented in sec. 3.5.3 may be
expressed in this form. It should be emphasized, however, that although these formula-
tions are defined in the more general symbolic space, the explicit update algorithms are
meaningful only in the case of the discretized equations. This is due to the fact, that, as
shown in sec. 2.2.3, the stability conditions of these algorithms require limited spectrum
of the operator in the corresponding eigenproblems, while the operators in the continuous
space are unbounded. Moreover, discretization is the only way to convert an operator
equation into the form of a numerical algorithm?.

Although every eigenproblem from sec. 3.5.3 may be converted to an explicit update
algorithm, not all of the obtained schemes will satisfy the stability conditions. In par-
ticular, in most practical cases, the stability conditions are not satisfied, if the scheme
arise from the formulations with eigenvalues 3, or 32. Stability conditions (2.2.26) and
(2.2.38) require in these cases, that all solutions (3, of the corresponding eigenproblem
are real®. In other words, all modes should propagate. This condition is satisfied for the
frequencies larger than the cutoff frequency of the highest order mode. It is obvious, that
this frequency range does not include the range, where the numerical dispersion error is
small and the modes of interest are easy to separate.

Estimation of the time step in the explicit update schemes In order to find the
maximum time step of the explicit update schemes, we need to estimate the norm of the
operator in the corresponding eigenproblem (according to the discussion from sec. 2.2.3).
We may use the fact that the nonzero? eigenvalues of every eigenproblem derived in
sec. 3.5.3 correspond to the same values of w. Therefore, it is sufficient to test the norm
of one general operator. The result may be then used for other operators. We limit our
discussion to strictly bidirectional waveguides. Further on, we base the analysis on w?
2-component formulations found in tab. 3.5.9. These eigenproblems may be written in
the following manner:

(ﬁngtm + Latu + Late)d, = w?d,
(Lptpz + Lt + Lte)b: = w?b

where the suboperators are defined as follows:

Latgz = —ZmMy'ZEy' (3.8.3)
Lot = ZmGimM,, DimZ Ey! (3.8.4)
Lag = ZmMy ZeGeE,, Dye (3.8.5)
Lptgz = —ZoEy ZmMy' (3.8.6)
Lotg = ZeGieE,, DieZimMy (3.8.7)
Lt = ZeEy'ZmGimM,, Dim (3.8.8)

"However, this discretization may have form other than the finite difference technique presented in
this chapter. Such methods as FEM, SDA and others are also based on a discretization of an operator
equation.

8This also implies that all solutions 32 must be real and positive.

9Some of the eigenproblems contain static solutions, and hence, have a number of multiply degenerated
zero eigenvalues.
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It is easy to verify, that the following relations are satisfied:

Lotz = —ZmLipsZm (3.8.9)
Lyt = —ZmLiinZm (3.8.11)

It is obvious that Ly¢g2 has the same eigenvalues as Lggg2 and the same is true for pairs
of operators Lyig, Labg and Lypig, Lapa-
Let us use the following estimation:

||Lael| < [[Laclls.=0 + |17 Lags2|] (3.8.12)
We may estimate the norm of operator Lgyg2 as follows:
[ Laege|| < 0Fa (3.8.13)

||Lat|| .0 is the norm of the operator Lg¢ at cutoff.
In order to find this norm, let us calculate fields d;z and b;g corresponding to, respec-
tively, modes H and E at cutoft:

1

JWH
1
th = _—Ztheez (3815)
JWE

According to properties (3.5.25) and (3.5.26), we get:

Latgdir = 0 (3.8.16)
Lptabie = 0 (3.8.17)

This means, that, at cutoff, eigenproblems (3.8.1), (3.8.2) reduce to the following eigeprob-
lems for modes E and H:

Latndiy = w’dipg (3.8.18)
Lytebz = Wb (3.8.19)

The eigenvalues of these equations being the squares of cutoff frequencies for, respectively,
modes F and H are the same as the eigenvalues of the following two scalar eigenproblems:

LezEezE = w2€zE (3820)
Lyuh.p = w’h.y (3.8.21)

where operators Le,g, Ln,g are defined as follows:

LezE = E;leteZmMa;lzthe (3822)
Lisn = Mg, DimZeEg ZmGim (3.8.23)

The above analysis gives the following formula for the norm of operators Ly, Lgs for

Bz:():

1Lell]5, -0 = [ILatlll5. o = max(|[Lacell, ||Lacl])
= max(||Legg||, | Lusrl|) (3.8.24)
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Table 3.8.1: Estimation of the norm mazimum of operators Lezg and Ly,m. Analysis of
nonzero elements in row i. €, p are associated with nodes, respectively, e, h, correspond-
ing to TOW i. flgy, flp—, Pyt, Py— ONA €xy, €4, €yy, €y correspond to, respectively, nodes
hy, hy in the neighborhood of node e, and e, e, in the neighborhood of node h..

LezE Lth
i At St — et
w N €y Ax? pezy Ax2 peg— Ax?
1 1 1 1
ey + Ay? leuu—AyQ pey+Ay? " pey— Ay?
dij (Z # j) - €lz+ Ax? _Hﬁx-‘rAxQ
1 1
€y — Ax? peg— Ax?
1 1
euerlAyQ MeerlAyQ
5 _euu—Ayz . _u6u—Ay22
Zj |aij| ww%ﬂ - Euzfgwﬁ_ uez+§m2 - ue%gzﬁ_
6u12;+Ay24 euu—fyg u612;+Ay24 uﬁu—fyg
| |é | |max Umax( Azx? + Aqy? ) Umax( Azx? + Aqy? )

Now, we have to estimate the norm of operators Le,g, Ln,u. We use the following
property:
AT < 1A o = max ) _ fas| (3.8.25)
j

The above equation shows that we may estimate the norm of an operator via analysis of
its nonzero elements. Tab. 3.8.1 shows the nonzero elements of operators Le,g, Ln,g and
presents the estimation of their norm maximum. Substituting the results of the analysis
from the table and eq. (3.8.13) into (3.8.12), we get:

4 4
Lag|| < v? —+ — 2 8.2
|| dt|| > Unax <Al’2 + AyQ +ﬁz> (3 8 6)

Substituting the above estimation of the norm into (2.2.38), we get the well known stability
condition [50]:

1
At < (3.8.27)

2

1 1
'Umax\/Alz + A2 + 7

In addition to (3.8.27), (. must satisfy the following condition:
F2eRr A 32>0 (3.8.28)

In other words, (3, must be real.

Positiveness of operators in egs. (3.8.1) and (3.8.2), also required for the stability,
is obvious, since each of the terms given by eqgs. (3.8.3)—(3.8.8) may be presented as a
product of two positive and symmetric operators. Note, that this is always true when the
conditions derived in sec. 3.5.1 are satisfied.
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3.9 Stability of 3D explicit update schemes

Analogously to the discussion from the previous section, we derive stability conditions
for explicit update algorithms written for 3D problems. When testing the norms, we use
property (3.8.25) and the norm maximum. We test the norm maximum of operators in
eigenproblems (3.4.36), (3.4.37), (3.4.38) and (3.4.39) with Ao = & and Ay, = . As it
was said in sec. 3.4.3, these norms maximum are the same as in the case of eigenproblems
with unshifted static solutions (egs. (3.4.28), (3.4.29), (3.4.30) and (3.4.31)). Now, we
use the fact that for the highest order modes, the field is concentrated in the area where
the wave can propagate at the highest speed (in the unbounded medium) or, in other
words, of the maximum value of 1/(u€). Therefore, when using expression (3.8.25), we
may analyze nonzero elements of the operator only in rows corresponding to this area.
The norm maximum, hence, corresponds to a suboperator consisting only of these rows.
This radically simplifies the analysis. Tab. 3.9.1 presents the nonzero elements of the
operators (they are the same for each matrix). Using these elements, we calculate the
norm maximum. From the table and eq. (2.2.38), we get the well known CFL (Courant-
Freidrich-Lewy) stability condition [45,79]:

At < L (3.9.1)

" Umax \/ ﬁ + A%yg + ﬁ

As in the 2D case, positiveness of operators in eqgs. (3.4.36), (3.4.37), (3.4.38), (3.4.39)
is obvious because, as follows from the properties derived in sec. 3.4.1, each of the terms
may be expressed as a product of two positive and symmetric operators.

When the domain is lossy, we deal with the explicit update scheme described in
sec. 2.2.3.3. In this case, the algorithm must satisfy condition (2.2.43) in order to be sta-
ble. We note that operator L must be symmetric. Although the operators in egs. (3.4.36),
(3.4.37), (3.4.38), (3.4.39) are not symmetric, we may easily symmetrize them by writ-
ing equivalent equations. For instance, for eq. (3.4.36) or (3.4.37) upgraded with a term
corresponding to losses, we get:

E*l/QRmelReEfl/Q(El/2e) +
EY2G.AD.EY*(EY%) = Ww?(EY%e) — juE Y?SE~V2(EY?%) (3.9.2)

Note, that since operator E is hermitian and positive, operator E'/? is also hermitian.
Now, the operator on the left hand side of the equation is hermitian. The eigenfunctions
of (3.9.2) are fields E'/?e. Egs. (3.4.38) and (3.4.39) may be symmetrized in the same
manner, with the eigenfunctions M'/2h. From eq. (3.9.2) it follows, that according to
eq. (3.4.36), in order to get a stable algorithm, At must satisfy condition (3.9.1) and
operators E, S must have the following property:

E-2SE"12 >0 (3.9.3)

This means, that both operators, E and S, must be positive. This is the case in practice,
since E=¢€and S = 0.
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Table 3.9.1: Estimation of the norm maximum of 3D operators in eigenproblems with
eigenvalues w?. Analysis of nonzero elements in row i in the region of the highest value
of the speed of wave vy ax.

Q4

2 2 2 2
UmaX (AzQ + Ay? + AZQ)

aij(i #])

_v?nax/AxQ
_U?nax/AxQ
_U?nax/Ay2
_Ur%lax/Ay2
_/UrQHaX/AZ2
—v2, JAZ?

max

> lai]

2 4 4 4
Umax (AzQ + Ay? + AZQ)

|| A |[max

2 1 1 1
4Umax (Aa:2 + Ay? + AZQ)
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Chapter 4

Local schemes

4.1 Introduction

In secs. 3.6, 3.7 we presented the form of the basic operators in the homogeneous parts
of the domain. These forms are valid, when the field variation within the cell is close
to linear and the medium does not change within the cell. If this is not the case, the
standard expressions have to be modified so as not to introduce the error. In most
cases the fundamental assumptions are not fulfilled only for some cells. For these cells
one may derive special expressions called local schemes. The local schemes introduce the
corrections that are needed to give a more accurate description of Maxwell’s equation on a
discrete grid. It has to be noted that the grid equations involve a number of basic operators
which are applied consecutively. The local schemes can modify some or all operators but
this changes should be introduced in such a manner as not to affect the constraints
imposed on them, expressed by the properties discussed in the previous chapter. Since
the sequence of basic operators defines an appropriate problem, while devising the local
scheme one may arbitrarily select one or more operators. In this thesis we propose to
base local schemes on the modification of the operators describing the media parameters.
This means that the operators corresponding to integral or differential operators are
unchanged, i.e. they have the same form as for the regular cells and linear field variations.
The modifications are localized in the basic matrices corresponding to material tensors.
This implies that for some cells these operators are no longer simply diagonal matrices
containing appropriate material constants at the corresponding points. Material matrices
have to be modified in order to correctly represent the field behavior in the grid equations
with using standard finite-difference operators. A similar technique has been proposed
by Gwarek [27,29] to account for the presence of electric and magnetic walls that do not
coincide with mesh points and by Celuch-Marcysiak and Gwarek [10] to handle cells loaded
with different media. In this chapter, we derive alternative local schemes for arbitrarily
located dielectric boundaries (secs. 4.2, 4.3) and electric walls (secs. 4.4, 4.5). In these
cases, the modification of the grid operators corresponding to media are relatively simple.
More complicated case, such as modeling of field singularity in the vicinity of conductive
wedges is treated in secs. 4.6, 4.7.

4.2 Modeling of interfaces between media in 2D

The first problem which requires an appropriate local scheme is the situation presented
in fig. 4.2.1, which depicts a dielectric boundary crossing Yee’s cell. Here, it is obvious
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Figure 4.2.1: Electric field at 2D Yee’s cell: parallel (a), normal (b) and at an arbitrary
angle with respect to the dielectric boundary (c).

that the operators which have to be modified have to do with the media properties. This
can be accomplished by deriving the effective permittivity for this cell which should be
selected in such a way that e.g. the field discontinuities are accounted for. We split the
analysis into three parts associated with different location of the boundary with respect
to Yee’s cell and presented in figs. 4.2.1(a), (b) and (c), namely for boundary parallel,
normal and at an arbitrary angle with respect to the vector!.

Vector parallel to the boundary In order to derive the effective permittivity for the

electric fields parallel to the dielectric boundary (fig. 4.2.1(a)), we start from the following
definition: .
D

e = =k (4.2.1)

Ej

where DII and EH are the mean values of, respectively, electric flux density and intensity
fields. Both symbols may be expressed in the integral form. We get:

% [ﬁsl €1E||d8 + ﬂ52 €2EHdS:|
s Is Byds

(4.2.2)

€=

Since the intensity fields parallel to the boundary are continuous, we may assume that
E) is constant in the entire cell:

E)| = const (4.2.3)

This simplifies eq. (4.2.2), and finally, we get:

6151 -+ 6252

. (4.2.4)

€ =

This equation defines the effective permittivity for the parallel electric field. Note, that in
2D this is also the effective permittivity for z electric field component, since it is always
parallel to the boundary.

Tt has to be noted that the results of the vectors parallel and normal to the boundary have been
earlier obtained by other authors [9,42]. Their derivation is included here for completeness. Also, some
researchers published formulas for oblique interfaces [9,42], but for that case the approach was different
from that presented in this thesis and the final expressions obtained here are different from those published
elsewhere.
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Vector normal to the boundary Analogously, we derive the effective permittivity
for the normal fields (fig. 4.2.1(b)). This time, we start from the following integral for-
mulation:

€| =

Er Ll LDyids + [, LDy ds]
The flux density fields normal to the boundary are continuous. Therefore, we may assume
that D is constant over the entire cell:

(4.2.5)

D, = const (4.2.6)

Putting (4.2.6) into (4.2.5), we get the effective permittivity for the normal electric fields:

S
S1 4 S
61_'_62

(4.2.7)

€| =

Vector at an arbitrary angle with respect to the boundary More general case,
with the electric vector at an arbitrary angle with respect to the boundary (fig. 4.2.1(c)),
requires more sophisticated treatment. We split the normal and parallel fields into x and
Y components:

E, = E;sing+ E,cos¢ (4.2.8)
E| = —E,cos¢+ E,sin¢ (4.2.9)
D, = D,sin¢+ D,cos¢ (4.2.10)
Dy = —Dgcos¢+ Dysing (4.2.11)

And ¢ is the angle between the boundary and z field component. The flux density and
intensity fields are related to each other by the following formulae:
Dl = ELEL (4212)
where €, ¢ are defined by eqgs. (4.2.7) and (4.2.4) respectively. Putting (4.2.8), (4.2.9),
(4.2.10), and (4.2.11) into (4.2.12) and (4.2.13), we get:
Dycosp+ Dysing = € E,cosp+ e E,sing (4.2.14)
—D,sing +Dycos¢ = —e L, sin¢ + €L, cos ¢ (4.2.15)

Relation between the flux density and intensity fields defines the effective permittivity in
the form of the following tensor:

- cos¢ —sing e, 0 cos¢  sing
| sing cos¢ 0 ¢ —sing cos¢

€L cos’ ¢+ ¢ sin®¢ (L — €)singcos ¢
[ (€L —¢))singcosg €, sin? ¢ + €| cos? ¢ ] (4.2.16)

Etteff

We may radically simplify the algorithm by ignoring non-diagonal elements of this tensor.
This leads to the following effective permittivity for the field component from fig. 4.2.1(c):

€of = €1 5In° ¢ + €| cos® ¢ (4.2.17)
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Boundary between magnetics In a similar manner we may calculate the effective

permeability:
[ = H1 sin® @ + gy cos® ¢ (4.2.18)
where the effective parallel and normal permeabilities are defined as follows:
p1S1 + p2Ss
M= g (4.2.19)
S
Hmi = 5 Sy (4.2.20)
21 + 22
1 M2

Modification of operators Calculated effective permittivities €. appear as diagonal
elements of matrices £ 4 (nodes E,, E,) or E .. (nodes E.) at the positions corresponding
to the modified nodes. Analogously, effective permeabilities pi.g are diagonal elements of
matrices M 4 or M ...

Stability condition of the explicit update schemes We may note that the effective
permittivity or permeability derived in this section is always larger than the smallest one.
Therefore, the new algorithm does not change the stability condition of the explicit update
procedures.

4.3 Modeling of interfaces between media in 3D

(b) ()

Figure 4.3.1: Electric field at 3D Yee’s cell: parallel (a), normal (b) and at an arbitrary
angle ¢ with respect to the dielectric boundary (c).

Analogously to the 2D case presented in sec. 4.2, we may derive the effective permit-
tivities and permeabilities for the cells crossed by a boundary between two media. For
the fields parallel to the boundary (fig. 4.3.1(a)), we have:

€1V + e Vs

el = g (4.3.1)
Vi + peVs

Perll = % (4.3.2)

where Vi, V5 are volumes of the regions corresponding to medium, respectively, 1 and 2
in the cell. For the fields perpendicular to the boundary (fig. 4.3.1(b)), we have:

V

i w
€1+€2

€eff L — (433)
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v

B M2

In a general case (fig. 4.3.1(c)), the effective material constants may be expressed in terms
of two previous pairs of equations:

€off = €Eeff|| cos® ¢ + Eeff L sin? ¢
Heff = Meff] cos” ¢ + Hegr L sin® ¢

where ¢ is an angle between the boundary and the direction of the field. The effective
material constants calculated this way should be set at the appropriate diagonal positions
of matrices £ (for the effective permittivity e.;) and M 4 (for the effective permeability

[heff)-

4.4 Modeling of metal boundaries in 2D

In this section, we introduce a technique for a less straightforward problem of accounting
for the presence of metal planes that do not coincide with Yee’s grid by a suitable local
modification of media properties.

Tangential components of the electric intensity field vanish at electric walls. Therefore,
if the electric nodes in Yee’s mesh coincide with the wall, the modeling of the boundary is
reduced to removal of these nodes from the basic operators. This corresponds to setting
the appropriate fields to zero. However, in practice the electric wall may be arbitrarily
located with respect to the grid. In order to correctly model such a general case, Yee’s
nodes should be deformed in the vicinity of the boundary, moving the integration paths
of the tangential components of the electric intensity field to the wall.

The algorithm presented in this section is similar to the approaches proposed by Gwa-
rek [27] and Railton [63,65]. Although these methods may be expressed in terms of
modification of the basic matrices, they do not satisfy the postulates derived in sec. 3.5.1.

4.4.1 Simple cells

Let us consider the case of a fragment of 2D Yee’s grid presented in fig. 4.4.1. Maxwell’s
grid equations in the integral form for standard node H, in fig. 4.4.1(a) may be written
as follows

—jwAzAypH, = Ax(Ey — Epq) — Ay(Ey — Ejp) (4.4.1)

Let us now consider the modified node in the neighborhood of the electric wall shown in
fig. 4.4.1(b). Note, that nodes F,5 and E,q;, E.1; were moved to the boundary, and hence
vanish, since the tangential electric intensity field vanishes at electric wall. Maxwell’s grid
equations for modified node H, take up the form

—jwShpH, = Ax(0 — E) + (Ay+a)Ej — (Ay +0)Eyp (4.4.2)
This may be rewritten as follows

Shz
a AzAy

—jwAzAy ( ) H. = Ax(0 — E,) — Ay(E,, — E,y) (4.4.3)



80 Fast finite difference numerical techniques ...
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Figure 4.4.1: Nodes E, and E, in the vicinity of an electric wall in the finite difference
algorithm before (a) and after (b) modification.

where fields E,;, E, are related to Ey;, Ey» by the following formulae

ybs
Ay +a 1Ay +a
E, = yAy B, = (Z yAy )Dyl (4.4.4)
Ay +b 1Ay +b
El, = yAy Ey2:<€ yAy )Dyg (4.4.5)

Let us note, that introducing quantities Eép E?’J2 instead of £, Ey» to vector e, we do not
modify matrices D ¢, G .. We modify only the corresponding diagonal elements of matrix
L. Comparing eq. (4.4.3) with (4.4.1) we see that the deformation of node H, may be
realized by introducing effective permeability at this node and effective permittivities at
the corresponding nodes £,; and F,. The effective permeability is given by the following
equation

o Shz
Hezeff = 'quAy

and this value should be set at the corresponding diagonal element in matrix M ... From
eqs. (4.4.4) and (4.4.5) it follows that the effective permittivities corresponding to nodes
E

y1 and Fys have the form

(4.4.6)

Ay
Eyyeff1 = €m (447)
A
i (4.4.8)

el = Ny b

These values will appear at appropriate places at the main diagonal of matrix £ 4.

As shown in sec. 3.6 the integration paths for fields F, and B, in the integral interpre-
tation of the grid equations are the same (see fig. 4.4.2). Therefore, we also need to modify
the equations for the transverse magnetic fields. By introducing quantity B! instead of
B, into vector b, we guarantee that operators D 4,, G 4, have the standard form. B is
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Figure 4.4.2: Nodes B, and B, in the vicinity of an electric wall in the finite difference
algorithm before (a) and after (b) modification. Compare with fig. 4.4.1.

related to B, as follows

Ay +a Ay +a
B = B, = H, 4.4.9
e G (4.49)
This leads to the following effective permeability at node B,
Ay+a
Wazeff1 = [b 4.4.10
fi1 Ay ( )
Analogously for node B,» we have:
Ay +b
Hzze = U 4411
N~ (1411)

These effective permeabilities are appropriate diagonal elements of matrix M 4.

4.4.2 General cells

In the previous section, we presented a simple cell in the vicinity of the boundary. How-
ever, definition of such cell does not cover all possible situations. Figs. 4.4.3 and 4.4.4
present a more general case. Here, we have node H o5 but the other H field (H12) required
for updating field E,;2 does not exist. Therefore, we should modify the algorithm. As
shown in fig. 4.4.3(a), instead of node E2, we introduce virtual node E,. Let us write
discretized Maxwell’s equations for electric flux density nodes D11, Dy, Dgoi:

JwAxDyyy = —(Hu — H.11) (4.4.12)
jWSUDv = _(H222 - Hz12) (4413)
JwAYD,yo1 = (Huo — H.o) (4.4.14)

Node H,i» appearing in (4.4.13) does not exist. We assume that the magnetic field is
constant over the new larger cell H,; and copy H,11 to H.qo:

H.p = H.1 (4.4.15)
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Figure 4.4.3: Nodes E, and E, in the vicinity of an electric wall in the finite difference

algorithm before (a) and after (b) modification.
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Figure 4.4.4: Nodes B, and B, in the vicinity of an electric wall in the finite difference
algorithm before (a) and after (b) modification. Compare with fig. 4.4.3.
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Eq. (4.4.13) takes up the form:
jWSUDv = _(Hz22 - Hzll) (4416)

As fig. 4.4.3(b) shows, we want to remove node E, (D,). The information about field D,
will not be lost, however, since we may calculate it from (4.4.12) and (4.4.14):

jWSva = —(Hz22 - HzZl) - (Hzm - Hzll)
= —ijyngl + ija:Dyn (4417)

Dividing both sides by jwS,, we get:

Az A
D, = S—Dyll - S—qu;m (4.4.18)

Let us write discretized Maxwell’s equations for nodes H,11, H.o1, H.o9 for the situation
from fig. 4.4.3(b):

_jw,uzzllshzllell = AyEyll + lva — (Ay + CL)Ey(n + A.I’Exlo (4419)
—jw,uzzgleAszgl = AyEygl - AlL‘Emgl - AyEyll + AZL‘EJQO (4420)
_ijU/ZZQQShZ22H222 = CEy22 — lva -+ AxE;ﬂ (4421)

The equations above use modified integration paths. We may also write these equations
with the standard integration paths. The modification will be then introduced into effec-
tive material constants. The standard equations may be written as follows:

—jwpl ArAyH.. = AyE,, — AyE g + ArEy (4.4.22)
—jwuzzgleAszgl = AyEy21 — AZ'E;21 — AyEgljll -+ Al’ExQO (4423)

Comparing (4.4.19)—(4.4.21) with (4.4.22)—(4.4.24), we get a set of new quantities:

Wogy = uzzujz—zly (4.4.25)

Mg = [hes2 AS;A”y (4.4.26)
and

Ely = AyA‘;C‘Eym (4.4.27)

By = AiyEym (4.4.28)

According to the discussion from sec. 4.4.1, eqs. (4.4.27), (4.4.28) lead to the following
effective permittivieties for nodes Eyg1 Eyoo:

. Ay
yyol = EyymAy—i—a

A
6;;y22 = Eyygg% (4430)

€ (4.4.29)
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Moreover, from (4.4.19)—(4.4.24), we get:

Ly
Egn = Eu+ A—yEv (4.4.31)
Ly
B = B — EEU (4.4.32)
AzEp,, + A?JEQH = AzxE. + AyEyn (4.4.33)

It is clearly seen that quantities F},, and E,, defined by eqgs. (4.4.31) and (4.4.32) satisfy
also eq. (4.4.33). Expressing the right hand side of eq. (4.4.31) in terms of the flux density

fields, we get:

1 [, 1
E, =— D +-22D, 4434
i + Aye ( )

Using (4.4.18), we get:

1 l, 1 /Ax A

Eyyll * A—yg SU S
1 Az l, 1 l, 1
= 2 \Dy-=2-D, 4.4.35
<€yy11 - Ay Sv 61)) uit Sv ) 2t ( )

In a similar manner we develop an expression for E’,; starting from (4.4.32) and using
(4.4.13) and (4.4.18):

1 l, 1
E, = - 2-D
1 I, 1 Az Ay
= Dyot — -2~ (==D,1; — =2D,
€rr21 21 Ax €y ( Sv vil Sv 21)
1 Ayl 1 I, 1
— =20 2\ Doy — 2D 4.4.36
<€zx21 - Ax Sv 61}) 2 Sv <) uit ( )

Eqgs. (4.4.35), (4.4.36) may be expressed in a matrix form as follows:

1 Ay I, 1 ly 1
E! LT I e R D
21 | _ Az Sy e Sy ey 221
l EQ’E = it 1 A1 D (4.4.37)
yl1 Sy €y €yyll Ay Sy €y yll

Matrix in (4.4.37) defines a part of matrix F 4 (or E') corresponding to nodes Do,
Dyi1. Note that the matrix is nondiagonal, but it is symmetric and, hence, satisfies
postulates (3.5.20), (3.5.22).

Local anisotropy associated with nondiagonal elements of matrix £ ' complicates
inversion of this matrix. Note, that for a diagonal matrix, the inversion is equivalent to
inversion of its diagonal elements. However, we may exclude 2 x 2 submatrices? of the form
from eq. (4.4.37) from the global operator. Inversion of operator® E ! requires, hence,
inversion of all submatrices associated with the general cells. This is a simple operation
of a low numerical cost, since the submatrices are small?.

2In sec. 4.4.3, we deal with corner cells which lead to 3 x 3 submatrices.

3and, analogously, operator M ;.

*An analogous discussion may be performed for calculation of operator £ tlt/ 2 (M zt/ 2) which may be
required for a symmetrization of some problems in a manner analogous to eq. (3.9.2) written for 3D.
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We may perform an analogous analysis for fields Byi1, Byo from fig. 4.4.4. All the
equations will be dual to the equations presented above according to the duality relations
developed in app. A.3.1. Finally, we get the following relation between fields B, By
and Hxlly Hygli

By | _ [ Heenn + 358 Skt Hay 4.4.38
B’ - Ly Ay by H (4.4.38)
y21 Sy Ho Hyy21 + Az S, o y21

We may now write a relation between all flux density and intensity fields from figs. 4.4.3
and 4.4.4 in a form of matrix equations. We assume that the domain is homogeneous.

B, 10 0 0 0 0 0 Do
B, 0 1 0 0 0 0 0 Do
Ay 1, Ly
B9 1 00 1+ AJxS_U AO S 0 0 Do
Ey|=-100 0 Syt 0 0 0 Dyor (4.4.39)
€ T ly
E 00 —& 0 1+%2¢ 0 0 Dy
Ey 00 0 0 0 1 0 Dy
| Eleo | 00 0 0 0 0 5 | L Du2 |
[ BaIvOl ] i Ag;a 0 O O 0 0 O 17 HxOl |
B, 0 1+%2¢ 0 0 00 & Hy11
Baoi 0 0 1 0 00 0 H,o1
B, |=p| 0 0 0 & 00 0 Hoo (4.4.40)
By1o 0 0 0 0 10 0 H 10
By 0 0 0 0 01 0 H o0
| By | 0 & 0 0 00 1+58& || Hpo |

Operators in (4.4.39), (4.4.40) are parts of, respectively, global matrices E ;' and M
corresponding to the nodes from the figure. It is clearly seen, that these operators satisfy
condition (3.5.27) for homogeneous domains.

Figure 4.4.5: Calculation of factor é—“’v l, is the shortest path from the removed e, cell to
the metal. Path S, s perpendicular to [,.

Finding factor é—“ We have not said anything yet about the choice of parameters [,

and S,. Fig. 4.4.5 will help us to find them. Parameter [, should be the shortest path
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from the removed e, cell (in our case cell E,1;) to the metal. Parameter S, should be
the length of the line perpendicular to [, connecting two lines parallel to [, and crossing
h, cells used for update of D, (in our case nodes H,11, H,2 from fig. 4.4.3) as shown in
fig. 4.4.5. Let us now find the actual value of factor é—i’j Analyzing the figure, we get:

Sy

% = cos(a — f3)

= cosacosf + sinasin (4.4.41)

We calculate sines and cosines also from the figure:

cosa = llv—x (4.4.42)

sinae = l;—y (4.4.43)
Ay

= — 4.4.44

cos 3 5 (4.4.44)
Az

i = — 4.4.4
sin 3 e ( 5)

Putting the above equations into (4.4.41), we get:

S Ayl n Axly,

CA 4.4.46

2¢ 2cl, 2cl, ( )
This leads to the following expression for é,#;:

[ 12

— = - (4.4.47)

Sy Ayly, + Axly,

4.4.3 Corner cells

Analogously, we may derive a local scheme for a corner cell presented, before modification,
in fig. 4.4.6 and, after modification, in fig. 4.4.7. We define submatrix Qt_tl using the
following relation between three electric intensity cells and the corresponding flux density
cells from fig. 4.4.7:

Ea/r21 Dz21
Egl;21 Dy21

Submatrix £ ! is defined as follows:

1 Ay (lv_lL LQL) b 1 Loy 1
) €xx21 Az A?vl Gzil Sv2 €2 L SvAl Evll ) Sv2 €v2
-1 _ 205 N 2T ty1 1
ét - Sul €vl €yyll + Ay Sy1 €v1 0 (4449)
Ly 1 0 1 Az lyy 1
Su2 €2 €yy21 Ay Sy2 €2

Analogously, we define submatrix M 4, (see figs. 4.4.8, 4.4.9):

By Hyn
By | =My | Huo (4.4.50)
By Hyo
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H zZ10 HZZO HZ30

Figure 4.4.6: Nodes E, and E, in the vicinity of an electric wall corner in the finite
difference algorithm before modification.
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Figure 4.4.7: Nodes E, and E, in the vicinity of an electric wall corner in the finite
difference algorithm after modification.
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Figure 4.4.8: Nodes B, and B, in the vicinity of an electric wall corner in the finite
difference algorithm before modification.
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Figure 4.4.9: Nodes B, and B, in the vicinity of an electric wall corner in the finite
difference algorithm after modification.
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M 4; may be written in the following way:

Az 1, ly
M1l + Aay: Stl Ho1 0 Stl Ho1
Az 1y, ly
Mtt = 0 Haz21 + AZ Sv22 M2 - Sv22 Hv2 (4451)
1y l Ay l Ly
Sy Mol TS M2 g + R (21 + §2 402

4.4.4 Stability condition for the explicit update schemes

For an explicit update scheme to remain stable, the modification of the basic operators
cannot change positiveness and norm maximum of the global matrix®. In sec. 3.8, we
showed that it is enough to test properties of operators Le,g and Ly,g defined by, respec-
tively, egs. (3.8.22) and (3.8.23), to get the stability condition. Let us construct these
operators for the nodes from figs. 4.4.3, 4.4.4. They are expressed in terms of basic matri-
ces, and hence, we have to define them. The basic matrices will operate on the following
vectors:

[ EzO—l ]
- - Ezl—l r T I Hle 1
gxlo E.p 1 me H 20
Ex20 Ezflo Hxll HzOl
21 x21
E, H,
eo=| B |, ex=| g |0 he=| Hem | ho=| g™ (4.4.52)
By E.20 Hyro H.3
Ey21 EZ Hy20 HZ
E 99 230 H o1 z22
L Y2 E;21 - | Hezo |
L EzBl |
Operators G ym, D ¢m, G te, D+ may be written as follows:
0 0 -2 x 0 0 0 0]
O 0 0 —x 2o 0 0 O
o o0 0 0 —x 2 0 O
Gpm=|0 0 0 0 0 0 —z = (4.4.53)
-y 0 0 y 0 0 0 0
O -y 0 O 9y 0 0 O
00 0 0 -y 0 y 0]
- x 00 —y 0 O
D= 0 —2z 2 0 0 -y vy (4.4.54)

0O 0 0« 0 0 -y

5We assume, that conditions derived in sec. 3.5.1 concerning symmetry are satisfied. It is true in our
case, since modified matrices E t_tl, M ;4 are symmetric.
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z 0 0 0O —x 0 0 0 0 0

—x x 0 0 0O 0 0 0 00

0O —x =z O O 0 0 0 00

0 0 —x O 0O 0 0 0 =z O

0 0 O = 0 0 0 0 00

0 0 O —x 0 0 0 0 0 =z

Ge=|yy 0 0 0 0 —y 0 0 00

0 vy 0 0 0 0 —y 0 00

0 0 y 0 0 0 0 —y 00

-y 0 0 0 0O 0 O 0 00

0 —y O 0 0O 0 0 0 00

0 0 —y y 0 0 0 0 00

0 0 0 -y 0 0 0 0 0 0]

—x oz 0 0 0O -y 0 0 y 0 0 0

D. O -2 o 0 0 0 0 —y 0 0y 0 O
=t~1 0 0 —xz 2 0 0 0 0 —y 00 y O

0 0 0O 0 —x 2z 0 O 0 00 —y vy

where x = 1/Az, y = 1/Ay. Matrices Z., Z ,,, have the following form:
000 -1 0 0 0 ] [0 000 -1 0
0oo00 0 -1 0 O 0000 0 -1
Ooo0o0 0 O -1 0 0000 0O O

7 _ oo0o0 o0 0 0 -1 7 0000 0 O
= ooo o0 o o0 o/} =" 1000 0 O
100 0 0 0 O 01 00 0 O
0o10 0 O 0 O 0010 0 O
o001 0 0 0 0 | 10001 0 O

(4.4.55)

(4.4.56)

(4.4.57)

Using egs. (3.8.22), (3.8.23) and the basic matrices defined above, we construct opera-
tors Le,g and Lp,g. Analogously to the discussion from sec. 3.8, we estimate the norm
maximum of these operators and test their definiteness. The results of the analysis are
shown in tab. 4.4.1 for operator Ly,g and in tab 4.4.2 for operator Le,g. By comparing
the norm maximum of the operators from tabs. 4.4.1, 4.4.2 with the norm from tab. 3.8.1
we can see that stability condition (3.8.27) will not change if the following conditions are

satisfied:

LAway) 2 2 [y, 0 Arh
pe Spain [Ay? - Ax? Ay Ay S,

LArAy) 2 (e Avl), 2
pe Shzaz [Ax? \Ay Ay S, Ay?

4 1 Ay
peAx? + peAx? <2 * Ay + a)
4 2 14284k
peda® T pedy? T peAy? 1+ (52 + AUk
1 142828 L2, 2
peAx? 1 + (i—“y” + %)é—z peAx?  peAy?
1 Ay
N

(4.4.58)
(4.4.59)

(4.4.60)

(4.4.61)

(4.4.62)
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Table 4.4.1: Estimation of norm mazimum of operator Ly,g. Analysis of nonzero ele-
ments in rows corresponding to nodes H.11, H.1o and H 9.

Hzll Hle HZQZ
1 a
pela? (1_'_ Ay)_'_ 2 2 i 2AL
. 1 Az 1 pelzxs Ay
Qi peAx? (1 + A_ys_iy) + pelAz? - pely? -1 1 + Ay Iy
1 neAy? Az S,
peAy?
1 1
peAy? elAy? 1 1y
_ 1 _a_ _ 1 ueAxAy Sy
2 + 2 1
a;j (Z # ]) pelAx L Ay ue%x ——L
I S N S peAy
s
I —_— neAz® Ay
peAxAy Sy peAy?
1 AzAy { 2 + 1 AzAy 2
S |aA | pe Shz11 [Ay? 4 (1 4 1 pe Shaoa | Ax?
J 2 (94 @ 4 Azl pe \Az? T Ay? e 4 Azly )y 2
Ax? Ay Ay Sy Ay Ay Sy Ay?

These conditions may be simplified, and finally we get the following set of conditions:

Shzll

Sh222

gy @ AT
Ay ' AyS,
c Az [,

Ay " AyS,

S AzAy
- 2

S AzxAy
- 2

< Shzll
- AzxAy
< Shzll
- AzAy
S

- 2
-
-2

> 0

(4.4.63)
(4.4.64)

(4.4.65)
(4.4.66)

(4.4.67)
(4.4.68)

(4.4.69)

Analogous analysis may be performed for the corner cells from sec. 4.4.3. This leads to

the same conditions.

4.4.5 Example

Local schemes presented in secs. 4.4.1, 4.4.2, 4.4.3 and conditions (4.4.63)—(4.4.69) derived
with the stability analysis performed in sec. 4.4.4 define an algorithm for treatment of
an arbitrarily located electric wall in the finite-difference grid. Fig. 4.4.10 presents an
example of Yee’s mesh of cells E,, F,, E, and H, crossed by an electric wall. Nodes
E. in the vicinity of the wall are shifted to the wall and removed from the vector. All
the cells which are removed are marked green. Fig. 4.4.11 presents the same mesh after
modification. Modified cells F,, E, are marked red and modified cells H, are marked

green.
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Figure 4.4.10: Nodes E,, E,, E, and H, crossed by an electric wall in the finite difference
algorithm before modification. Nodes E., in the vicinity of the wall will be shifted to the
wall and removed from the vector. Green cells will be removed.
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Figure 4.4.11: Nodes E,, E,, E, and H, crossed by an electric wall in the finite difference
algorithm after modification (compare with fig. 4.4.10). Modified cells E,, E, are red and
modified cells H, are green.
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Table 4.4.2: Estimation of norm mazimum of operator Le,g. Analysis of nonzero elements

i rows corresponding to nodes E.og, E.10 and E.o;.
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4.5 Modeling of metal boundaries in 3D

(b)

(a)

Figure 4.5.1: Nodes E in the vicinity of an electric wall in the 3D finite difference algo-
rithm before (a) and after (b) modification.

The definition of rotation operator is expressed in terms of line and surface integrals.
Since Maxwell’s equations are written with such operators, it is intuitively seen, that the
finite difference local schemes derived for 2D equations may be easily generalized for 3D
case. In particular, we may generalize the 2D algorithm presented in sec. 4.4 to get its
3D version. Fig. 4.5.1 presents a simple 3D cell in the vicinity of a metal plane. This
figure corresponds to fig. 4.4.1 presenting the 2D version. Fig. 4.5.1(b) shows, that nodes
ue close to the boundary are moved to the metal wall. These elements should be removed
from the vector. By examining the figure, we see, that as in the 2D case, we should
modify the line integrals of the electric intensity field and the surface integrals of the
magnetic flux density field in the grid equations. As before, this leads to modification of
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(a) (b)

Figure 4.5.2: Nodes E in the vicinity of an electric wall in the 3D finite difference algo-
rithm before (a) and after (b) modification.

matrices corresponding to material properties, £/ and M , with effective permittivities and
permeabilities. Also note, that the volume corresponding to the scalar field v,, changes
in the vicinity of the wall. This leads to modification of matrix A, if it is used.

Analogously, fig. 4.5.2, presenting a general location of a wall with respect to the grid,
corresponds to fig. 4.4.3. As before, this general case leads to nondiagonal elements of
matrices £, M .

4.6 Modeling of field singularities in 2D

We shall now derive an algorithm improving accuracy when the analyzed structure may
lead to singularities of the electromagnetic field. Such singularities may appear for
instance near conductive wedges. Because such elements are very common in practice (for
instance in planar structures), improvement of the finite-difference methods to reduce the
errors in these cases appears to be a very important problem. In a standard approach,
knowledge of the field behavior in the vicinity of the singularity is used. There are many
algorithms based on this approach in the literature [5,6,23,31,33,46,47,55,62,64, 72-74].
All these methods stem from a technique called the method of Woods [86] adapted for
Yee’s mesh. One big disadvantage of the published techniques is that they may lead to
relatively large local error if the structure moves with respect to the finite-difference grid.
This are important limitations which make analysis of a particular structure difficult or
even impossible because it requires the mesh which takes into account the location of the
singular points. Moreover, most of the published methods require local homogeneity of
the domain. In this section we shall develop a new algorithm which allows one to place the
object introducing the field singularity at an arbitrary position with respect to the mesh
in homogeneous and inhomogeneous domains [56,60,61]. This algorithm will match the
concept of modification of basic matrices. A general idea is again to modify matrices E 4,
M 4 so that the field behavior is correctly represented by the standard grid equations.
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4.6.1 General investigations

Algorithm based on cutoff solutions We expand the longitudinal field components
in the region of singularity into a series of functions:

e, = Zceiem (4.6.1)

hz = Zchihzci (462)
i
where c.;, ¢p; are unknown coefficients. Functions e,.;, h..; are the solutions of cutoff
scalar equations for w = 0 in the vicinity of the singularity (see tab. 3.5.10):

DieZmM'ZeGieloei = 0 (4.6.3)
DimZoEi Zmn Gimhci 0 (4.6.4)

We assume that these solutions are already known®. Let us concentrate on field e,.

Limiting the sum in (4.6.1) to the first few terms and writing it for a few grid points e,
we may present it in the following matrix form:

QZ - éecge (4-6.5)

Further on, we assume, that the number of elements in the sum is equal to the number
of grid points, and hence B, is a square matrix. We also assume, that the location of
these points does not lead to the singularity of the matrix. Element ij of matrix B .. is
equal to the value of function e,.; of series (4.6.1) at grid point e,;:

Becz’j = ezcz"ezj (466)
Let us now write Maxwell’s cutoff equation for field b; in terms of field e ,:
_jwét = _é egteﬁz (467)

Note, that here we use symbols Z., G not for the global operators but only for their
parts corresponding to nodes b; and e, in the vicinity of the singularity. In the same
manner, we will use symbols Z,,, Gy, £ and M 4, Putting eq. (4.6.5) to (4.6.7), we
get the relation between field vector b; and coefficient vector c.:

_jwbt = _é egteéecge (468)

This leads to:
Ce = _jwégclgz{eémbt (469)

Operation (.)! is a quasi-inversion and will be discussed in one of the next paragraphs.
At this stage of discussion, we may assume that it is equivalent to the inversion. Vector
h; may be expressed in terms of c. as follows:

_jwﬁt = gth ecCe (4610)

Matrix A .. in this equation converts coefficients c,; into indefinite integrals. Further on,
matrix G 4, converts it to the definite integrals. Element ¢j of matrix A .. is the value of
appropriate indefinite integral of function e..; at grid point h;:

10 10
ecij — _ezcidy = - / __ezcid'r
hey Oy he

pOx
6Tn the next section, we deal with conductive wedges, where these solutions are expressed analytically.

(4.6.11)
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Putting eq. (4.6.9) into (4.6.10), we get:
hie=GmAeB ' GieZmb: (4.6.12)

The above equation shows relation between fields h; and b,. Since hy = M ﬁlét this also
defines operator M ;;':

M;'=GimAeB. .Gl Zm (4.6.13)

In the same manner, we construct matrix E ;':
Ey' =-GuAnBpGinZe (4.6.14)
with matrices B j, A pe defined as follows:

thij = hzci|hzj (4615)

= — | —h.do

4.6.1
- (4.6.16)

zj €zj

We should note, that operators M w', E ;' defined this way are not symmetric, and hence

do not satisfy conditions derived in sec. 3.5.1. The symmetry problem will be solved in
one of the next paragraphs.

Algorithm based on static solutions Analogous procedure may be performed when
constructing the basis from static equations for 3, = 0:

DicEttGie€.si = 0 (4.6.17)
Dthtthmhzsi (4618)

|
o

This leads to the following definitions of matrices £ and M 4:

By = ZnGmAeB G (4.6.19)
My = ~ZGwAnBiiGin (4.6.20)
Matrices B cs, B hs, Aes, Ans in the above equations are defined as follows:
Besij - ezsi|ez]. (4621)
Bhsij = hzsi|hzj (4622)
0 0
Aesi‘ /6 ezszdy = —/e—ezsid:v (4623)
’ a hzj ay hzj
A [ hed / 0 hoid (4.6.24)
i, 251 = - 7 Nzs:AT 0.
hsij lua y /’Lay

€zj



98 Fast finite difference numerical techniques ...

Equivalence of cutoff and static approach We may show that algorithms based
on cutoff and static equations are equivalent. Assuming that the domain is isotropic,
egs. (4.6.3) and (4.6.18) may be written as follows:

010 010

o 0 o 0

Applying double indefinite integral [[(.)dzdy to these equations, we get the following
relations:

10 10
—Qa_ zcid = _/__ zcid 4.6.2
,uﬁxe y ,u@ye x (4.6.27)
0 0
D hudy = — / I hud 1.6.2
/“ax y Hy il (4.6.28)

One may note, that the integrals in (4.6.27) are functions satisfying eq. (4.6.26). Analo-
gously, integrals (4.6.28) are solutions of (4.6.25). Therefore, the relations between basis
functions h.g; and e,.; may be written with accuracy to the scaling factor in the following
way:

10 10
_ fto . _ (1o 1.6.2
hzsz MaerCZdy /Mayezczdx ( 6 9)
Coi = / 9 pd ——/ 9 hda (4.6.30)
zci Mal' zsitdY = May 251 -0.

Analogously, we may write the relations between basis functions e, ; and h..;. This and
the definitions of matrices A .. and B ., give the following relations.

Beo = Ane (4.6.31)
Ao = Bhe (4.6.32)
Bhrs = Ac (4.6.33)
An = B (4.6.34)

We may now compare eqs. (4.6.19), (4.6.20) with (4.6.13), (4.6.14) and conclude, based
on the above relations, that they are equivalent.

Properties of the algorithm in the homogeneous domain We may note, that in
the homogeneous domain, the cutoff and static solutions form the same basis. This gives
the following relations:

ec — ,Uéhc (4635)
eB.. (4.6.36)

[SNFS
I

he

This and the definitions of matrices £ 4, M 4 imply, that the algorithm presented above
satisfies condition (3.5.27) written for the homogeneous domain.
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Symmetrization of operators E, M, We should note, that operators M ', E ;'
(or Ey, M) defined above are not symmetric, and hence do not satisfy conditions
(3.5.20), (3.5.21). Fortunately, the algorithm is not sensitive to small deformations of
Yee’s cells in the vicinity of the wedge. Therefore, we may choose the locations of the
appropriate nodes in the way leading to symmetric operators. This may be also achieved
in a simpler way, where we symmetrize nonsymmetric matrices as follows:

C «—05C +C" (4.6.37)

where C', denotes the operator to be symmetrized. In order not to disturb condition

(3.5.27) for homogeneous domains, we should symmetrize only one of the pairs E 4, M it
or %tt; éﬁl-

Quasi-inversion of matrices G, G, Expressions describing matrices E 4, My
include inversions of matrices G ;. and G 4,,,. Unfortunately, in many cases, these matrices
cannot be inverted, because they are singular. Let us note, however, that zero eigenvalue
of these operators correspond to one of the static modes e,; = const or h,; = const.
These modes do not have the transverse field components, and hence have no influence
on matrices £ and M 4. Therefore, we may assume that these modes do not exist in
the global field. In this case we may remove zero eigenvalue as follows:

g:fm = th + htOﬁZ@ (4638)

where h . is nonzero eigenvector corresponding to zero eigenvalue, and h 4 is an arbitrary
nonzero vector in space {h;}. Operator G}, is not singular and may be inverted. We

call operator G .1 the quasi-inversion of Gim (Gf, =G ;fnl).

Stability of the explicit update schemes Stability condition of the explicit update
schemes has not been established analiticaly, and will be the subject of the numerical
tests performed in chapter 7.

4.6.2 Conductive wedges

When a conductive wedge is the source of singularity (fig. 4.6.1(a)), series (4.6.1), (4.6.2)
take up the form [47]:

e, = Zozejceir”isin(yiqﬁ) (4.6.39)
i=1

h, = Zahjchir”icos(ui@ (4.6.40)
i=0

where a.j, asj, v; have to be chosen in a way satisfying all boundary conditions.

Thin conductive strips at dielectric boundary Tab. (4.6.1) presents definition of
basic operators for the conductive wedge placed symmetrically between two dielectrics
(figs. 4.6.1(b,c)). One may note, that this includes a very common case of a thin metal
strip placed on a dielectric boundary, which may be seen as a conductive wedge of angle
a=0.
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Figure 4.6.1: Conductive wedge in an inhomogeneous domain: general case (a), wedge
symmetrically placed between two dielectrics (b), nodes used in the correction algorithm
for the wedge of angle o = 0 at ¢g = 180° (c).

4.6.3 Thin wires

Analogously, we may use the algorithm derived in sec. 4.6.1 to model a thin conductive
wire of radius a. Assuming that the wire is placed in a homogeneous domain, series
(4.6.1), (4.6.2) become:

€ = i [aci Ji(r) + beiNi(7)] [Cesi SIn(i0) + Ceci cO8(i0)] (4.6.41)
he = i [ani Ji(r) + bpiNi (1)) [chsi $in(i0)) + Chei cos (i) (4.6.42)

Il
o

1

where J;(r), N;(r) are, respectively, Bessel and Neumann functions, and ae;, bei, Gni, bp;
are coefficients satisfying the following boundary conditions:

aeiJi(a)—l—beiNi(a) = 0 (4643)

Coefficients ceg;, Ceei and cpgi, Cpe; in eqs. (4.6.41), (4.6.42) are elements of, respectively,
vectors c. (eq. (4.6.5)) and cy.



Chapter 4  Local schemes 101

Table 4.6.1: Definition of basic matrices for the conductive wedge placed symmetrically
between two dielectrics.

0 sni S12 513 1 C11 C12 C13
B - 0 so1 (u/p1)s22  So3 A — L 1 C21 C22 C23
= 0 s31 (po/p1)S22 Ss33 = m |1 (m/p2)est cs2 (pa/p2)css
1 0 0 0 1 (Ml/M2)041 C42 (Ml/#2)043
1 C11 Ci2 C13 0 s S12 513
B, = 1 C21 C22 Ca23 A= 1 0 s91 (61/6)822 523
=" 1 (ez/e1)esr c32 (€2/€1)css =" a0 sy (e1/€2)S32 Ss3
1 (62/61)041 Cy2 (62/61)043 1 0 0 0
-1 1 0 0 —0.75 0.5 0.25 0
I 01 -1 0 I 0.25 0.5 0.25 0
gtm_g 0 0 1 -1 gtm_ 0.25 —0.5 0.25 0 g
0 0 0 0 0.25 =05 —=0.75 0
10 0 0 1 0 00
101 0 0 ;101 00
gte—g 00 —1 0 gte_ 00 —1 0 ﬂ
00 0 0 0 0 00
1 0 0 0 -1 0 0 O
0O —-1.0 O 0O 1 0 O
ée_ 0O 0 1 O ém_ 0O 0 -1 0
0 0 0 -1 0 0 0 1
sy =1y sinv;g;
H = diag(Az, Ay, Az, Ay) cij =1’ cosvp;
Vi:27:7ioz
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4.7 Modeling of field singularities in 3D

Like in the case of metal boundaries, the 2D algorithm dealing with singularities, presented
in sec. 4.6, may be easily generalized for 3D case. To this end, we use static solutions of
wave equations in the region of the singularity:

RuM 'Reey; = 0 (4.7.1)
R.E 'Rphy = 0 (4.7.2)

These solutions may be written in the following form:

€si = Geuesi (473)

hsi = Gmumsi

where ey, Unms are scalar fields. We substitute eqs. (4.7.3), (4.7.4) into, respectively,
(3.4.5) and (3.4.6), and get the following operator equations” for s, Upsi:

DeEGeuesi

D MG Upsi 0

Now, we expand potentials u., u,, into series of static solutions .y and ,,s;:
Ue = Z Ceillesi (4.7.7)
i

Uy, = Zcmiumsi (4.7.8)

Eq. (4.7.7) may be written for a few grid points points u.;. Limiting the series to the first
few terms, we may write this equation in the following matrix form:

U, = B.c. (4.7.9)

I

where the elements of matrix B . are defined as follows:

Beij = uesi| (4710)

Uej
i.e. the element of matrix B . in row ¢ and column j is the value of function u.,; at grid
point u.;. Like in the 2D case, we assume, that matrix B . is square and not singular. In
the next step, we write eq. (4.7.3) for a few points e in the region of the singularity. This,
again, may be presented in the matrix form:

(4.7.11)

Q:

[

I=
a

€

Substituting the above equation into (4.7.9) and inverting the matrices, we get a relation
between vectors ¢, and e:

ce=B.'Gle (4.7.12)

s

o

where (.)7 is the quasi-inversion already described in sec. 4.6.1. Let us now write equations
for all three components of the electric flux density field in terms of the scalar field w,.

"We assume, that r = 0.
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From (4.7.3), we get:

D, = e%ue (4.7.13)

D, = egu (4.7.14)
Y ay €

D, = egu (4.7.15)
z az &

These quantities may be averaged over the integration surfaces corresponding to the nodes
dy, dy, d.:

d, = AylAz/syz e%uedydz (4.7.16)
d, = ! // egu dxdz (4.7.17)
Y AxAz s, Oy ° o
d, = ! // egu dxdy (4.7.18)
: AxAy ) Js,, 0z ° o

In order to calculate the above definite integrals, we should define indefinite integrals at
appropriate grid points (nodes u,,;). Instead of functions u., we now use the elements of
series (4.7.7) u.si. We get:

0

Ae:vij = // E%uesidydzu . (4719)
0

Auyy = / / ey lendeds) (4.7.20)
0

Aezij = // E%Uesidl’dy . (4721)

These elements define matrices A, Acy and A... The indefinite integrals may be now
converted to the definite ones. For instance, for nodes d,, we get:

ge:pd = gexﬁmg mé exCe (4722)

where C ., is diagonal matrix with diagonal elements equal to 1, if the element corresponds
to x field component, and 0 elsewhere. In the same manner, we may calculate y and z
components of vector d defining analogous matrices C., and C... Combining these
equations together and using (4.7.12), we get the following relation between fields d and
e:

4= (CaBnGnAutCoBnGnAe+CoBnGnAs)BI'Gle  (4723)
Since d = E e, the above equation defines matrix £ :
E=(CaBpGudetCoRnGna+CoBnGrde)BIGE (4720

In the same manner, we may calculate matrix M using series (4.7.8):

M = (CoeB G oAma + CoReG Ay + ConcB G oAn) BLIGE (4.725)
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with the elements of matrices Az, Ay, Am. defined as follows:

Ama:ij = // G%Umszdydz
Apyii = / / e(%umsidxdz

Amzij = // G%Umszdl‘dy

Uej

(4.7.26)

(4.7.27)

(4.7.28)

and analogous diagonal matrices C .z, C pny, C p» With the unit elements corresponding

to the appropriate field components.



Chapter 5

Schemes involving space
decomposition

5.1 Introduction

In the previous chapter we discussed standard FD algorithms where the whole domain
was covered with Yee’s mesh. Local schemes were introduced to better approximate the
field within a cell. In the derivation of local schemes the use was made of the analytical
description of the electromagnetic fields. This concept can be extended further if one
has a good analytical technique which is valid for regions spanning many cells. In this
chapter, we introduce such algorithms. The general concept can be summarized as follows.
Instead of covering the whole space with the mesh the analyzed domain is decomposed
into a set of subdomains. As shown in fig. 5.1.1, the analyzed structure is divided into

S

Figure 5.1.1: Domain decomposition.

smaller subregions. In general, each of these subregions may be analyzed using a different
algorithm which does not to be based on finite difference approximations. One has to take
care to satisfy the appropriate boundary conditions as well as the continuity conditions
between the subdomains.

For the structure shown in fig. 5.1.2 divided into two subdomains with the common
boundary 6{2 the continuity condition given as follows:

En = Ep

Hy = Hy }on o2 (5.1.1)

105
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where subscript ; denotes the field component tangential to the boundary and indices
denote the subregions.

Figure 5.1.2: Field matching concept. The tangential intensity field components on the
boundary 0§2 should match.

In this chapter, we show how to use the eigenfunction expansion technique for modeling
fields in some of the subdomains and how to impose the continuity conditions when
different field representations are used in two adjacent subdomains.

We present two approaches depending on the type of the analyzed region. The first,
less general approach, which extends the hybrid PEE-FDTD technique proposed in [51],
deals with structures which involve subdomains uniform in one direction. In sec. 5.2, we
introduce the algorithm which converts 3D problem in this subdomain into a series of 1D
problems. From the technical point of view, the subdomain may be treated as a section
of a waveguide and each of these 1D problems is related to a different mode of this guide.

Nonuniform structures require different treatment. Algorithm for modeling general
3D subdomains is presented in sec. 5.3. Also in this case, a 3D problem is converted
into a series of 1D problems, and each of them is related to a resonance of the structure
constructed from the subdomain with the appropriate boundary conditions.

Since in this thesis we deal with the finite difference methods, the most interesting
for us is the interface between the eigenfunction expansion techniques modeling a given
subdomain and FD-FD or FD-TD method used in its neighborhood. Because of the
properties of the finite difference techniques, such an interface has to be realized based on
two planes of Yee’s grid. The area of these two planes is in fact a common region of the
subdomains analyzed with the eigenfunction technique and the finite difference method.
This is presented in fig. 5.1.3, where the interface planes are denoted with numbers 0
and 1. The field in plane 0 is calculated with the finite difference algorithm and is the
source for the field in the subdomain analyzed with the eigenfunction expansion method.
Analogously, the field in plane 1 is obtained from the eigenfunction expansion technique
and acts as a source for the finite difference part of the algorithm.

The interfaces based on the scheme presented above are presented for the algorithms
modeling subdomains uniform in one direction (sec. 5.2.3) and for a more general 3D
technique (sec. 5.3.2).
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| |

EIGENFUNCTION
EXPANSION FDTD

Figure 5.1.3: Interface between the partial eigenfunction expansion technique and the finite
difference approach.

5.2 Subdomains uniform in one direction

The computation time in the finite difference methods may be significantly reduced in
the regions where the analyzed structure is uniform in one direction. From the technical
point of view, such structures may be treated as sections of waveguides. In fig. 5.2.1, we
give four examples of homogeneous and inhomogeneous waveguides. The sections of all
these structures may be modeled using the algorithms presented below. We introduce
the modal expansion technique which converts a 3D electromagnetic problem in a section
of waveguide into a much faster 1D finite difference model. In sec. 5.2.1, we deal with
homogeneously loaded waveguides. We take advantage of the orthogonality relations
between the electromagnetic field in such structures, and get a series of independent
algorithms for modeling of each mode of the waveguide separately. Inhomogeneously
loaded waveguides do not have this property and therefore require more sophisticated
treatment. We present this approach in sec. 5.2.2. Finally, in sec. 5.2.3 we introduce the
interface between the modal expansion techniques and the finite difference method.

5.2.1 Homogeneous waveguides

In waveguides that have uniform cross-section, each mode satisfies the following dispersion
equation [37]:

pe(w? — W) fr = B2 fu (5.2.1)
where wy, is the cutoff frequency of the k-th mode and fj, represents the corresponding field
distribution across a waveguide. We assume that z represents the direction of uniformity of
the waveguide. Eq. (5.2.1) may be written independently for each mode of the waveguide.
In the domain of time and space it becomes:

0? 9 0?
This leads to the following equation:
0? 1 0? 9
—fi=—=—=/fc— 2.
athk ,ue@fok Wi Sk (5.2.3)
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Figure 5.2.1: Exzamples of homogeneous and inhomogeneous waveguides.

We may discretize eq. (5.2.3) with respect to variable z using the central difference scheme
to get the partial eigenfunction expansion scheme proposed in [51]

82

@f’c(ﬁ) = (,UEZZQ +W}%> fe(z) + .

e 22

[fk(]z - 1) + fk(]z + 1)] (524)

frx(j) is a discretized field, and is a function of j, which denotes a plane of the 1D grid
with the constant grid step Az. A sample grid placed in the rectangular waveguide from
fig. 5.2.1 is shown in fig. 5.2.2.

Hmﬁn

Figure 5.2.2: A 1D grid of the partial eigenfunction expansion method in a homogeneous
rectangular waveguide.

In the frequency domain eq. (5.2.4) may be written in the following form:

wfr=Lf (5.2.5)



Chapter 5  Schemes involving space decomposition 109

where f = [fi(0), f(1),...]", and matrix L is defined as follows:

2 -1 0 --- 0]
1 —1 2 -1
ézm 0 -1 2 . 0|+wil (5.2.6)
L0 - 0 -1 2

Note, that eq. (5.2.5) assumes appropriate boundary conditions at the first and last cross-
planes of the grid. In practice, the eigenfunction expansion technique is used as a part
of a hybrid procedure, being connected via an interface to another techniques modeling
neighboring subdomains. Therefore, operator L should be treated as a part of a larger
global operator modeling the whole domain. The interface between the modal expansion
and the finite difference approach is presented in sec. 5.2.3

According to the analysis performed in sec. 2.2.3.2, eq. (5.2.5) may also be written in
the domain of time using the explicit update scheme.

Stability condition for the explicit update scheme We showed in sec. 2.2.3.2, that
the stability condition depends on the norm of the operator of the corresponding matrix
eigenproblem. This norm, for the problem at hand, may be estimated based on eq. (5.2.6)
using the norm maximum. This gives:

4
LI = e < g+ (527)

The stability condition becomes:

1
wy € R, At < (5.2.8)

Uy/ Ale + (58)?

where v = (ue) is the wave speed. In addition to the stability condition (5.2.8) matrix
L has to have real and positive spectrum. This condition is satisfied, since the operator
is symmetric and diagonally dominant.

—-1/2

5.2.2 Inhomogeneously loaded waveguides

Since eq. (5.2.1) is satisfied only if the waveguide is homogeneous, inhomogeneously loaded
waveguides require a different treatment [22]. This approach is based on the eigenfunction
expansion algorithms developed for the fast analysis of dispersive properties of waveg-
uides [57-59]. We assume that the dispersion equation has already been solved for the
analyzed waveguide at a few discrete points, i.e. we know a few solutions of the form
(Etk, ﬁtk, Wk, B.x) from the dispersion characteristics. A sample dispersion characteristics
of a waveguide is shown in fig. 5.2.3. In the first step, we expand the fields in a section of
this guide into a series of modes from our set of the known solutions:

E, = Y apEy (5.2.9)
k

H = Y bHy (5.2.10)
k
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Figure 5.2.3: Sample dispersion characteristics of a waveguide and various bases for the
eigenfunction expansion technique: static solutions (f = 0), cutoff solutions (3, = 0),
solutions for f=60GHz, and for 3, = 1500 rad/m.

The choice of the solutions from the characteristics may have large influence on the final
results. A good choice are the points corresponding to lower order modes for 3% = const
(eg. solutions at cutoff or for 3, = 1500rad/m in fig. 5.2.3) or w? = const (eg. static
solutions or solutions for f = 60GHz in the same figure). In these cases, the basis created
by Ey, Hy, is strongly minimal® [38]. Further on, we assume that w? and (32, are real.
Based on these expansions, we may write the wave equation in the following form?:

GW —Q%a=5(F1 -Z%a (5.2.11)

where: a = [ay, as,..]7, Q2 = diag(w}), Z? = diag(#%), and the elements of matrices G
and S are given by the equations:

G = // Dy, -7, X Bids (5.2.12)
S

S = // By, 7. x Hids (5.2.13)
S

Eq. (5.2.11) may be written in the domain of time and space. We get:

0? 92
€ (é 52 0) +22> a=5 (é 52 0) +;2> a (5.2.14)
This gives:
0? o2
aze = lﬁ‘lé <£@(') +£2> —22] a (5.2.15)

Isee also chapter 6.

2We introduce this equation a priori without presenting details of eigenfunction expansion methods
used to develop this formula. These methods are investigated in chapter 6. Derivation of eq. (5.2.11) is
given in sec. 6.3.1.
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We now use the central difference approach with respect to variable z. Eq. (5.2.15)
becomes:
82

P s =-[as (oL - 27) + 270l + g
gali) == G7'8 (5L - 2°) + 2% ali) + 5 5€

Il

[Q (]z - 1) +Q<jz + 1)]
(5.2.16)

An analogous approach may be applied for the magnetic fields. This leads to the following

equation:

o* {

b =[G st 2 - 2?) +g?]b(jz)+iG—HSH[l_a(jz )4 b(. £ 1)]

= = <Az2: = A= =
(5.2.17)

where b = [by, by, ...]7. Like in the previous section, j, identifies a slice in the 1D grid (see
fig. 5.2.4).

Figure 5.2.4: A 1D grid of the eigenfunction expansion method in an inhomogeneously
loaded rectangular waveguide.

Note, that the PEE algorithm for modeling of homogeneous waveguides presented in
sec. 5.2.1 is a special case of the technique presented here. When €(x,y) =€, pu(z,y) = p
the matrices are defined as follows:

G'S = (ne)'L (5.2.18)
Q = diag(ws) (5.2.19)
Z =0 (5.2.20)

where wy, are in this case the cutoff frequencies of the corresponding modes. Based on
eq. (5.2.16) or (5.2.17), we may construct a matrix equation written in frequency domain.
For instance, eq. (5.2.16) becomes:

w’a'=La' (5.2.21)
where a’ = [a (0)7,a (1)7,...]7, and matrix L has the following form:
‘X Y 0 e 0]
Yy X Y :
L=]90 v X 0 (5.2.22)
0 0 Y X |
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with matrices X, Y defined as:

X =G'S (é;—;Q)JrQQ (5.2.23)
1
Y = —A—Zzg“g (5.2.24)

Again, in practice, matrix L is a part of global operator which models all subdomains
using a hybrid approach (see the discussion in the previous section).

We may also write egs. (5.2.16) or (5.2.17), in the form of an explicit update algorithm
presented in sec. 2.2.3.2 in order to get the solution in the domain of time.

Stability condition of explicit update scheme In order to derive the stability condi-
tion for the explicit update algorithm, we should estimate the norm of operator L defined
by eq. (5.2.22). From the norm maximum, we get:

4vr2nax
L] = @iax < 125 + max(vh B2 + wp) (5.2.25)
According to sec. 2.2.3.2 and eq. (5.2.25) we get the following stability condition for the

algorithm at hand:

1
At < (5.2.26)

2
1 1 2 w
Umax\/ A7 T WAk < 2k T v,%f;)

It should also be shown, that matrix L has real and positive spectrum. In sec. 5.2.3, where
we define the interface of the new approach with the classic finite difference algorithms, we
limit the analysis to the case, when the expansion functions are calculated for a constant
frequency (i.e. w? = const) or for 3%, = const. It may be shown, that in these cases reality
and positiveness of the spectrum of the operator results from the relations between the
fields.

5.2.3 Interface with Finite-Difference methods

The classic finite difference algorithms can easily be combined with the eigenfunction
expansion techniques introduced above. To this end, an interface between two algorithms
has to be developed.

Since the algorithm presented in sec. 5.2.2 is a special case of the more general tech-
nique described in sec. 5.2.1, we define the interface with the standard finite difference
algorithms only for the general case.

A sample interface between the modal expansion and finite difference techniques is
shown in fig. 5.2.5. Two distinguished grid planes, 0 and 1, may be seen in this figure.
The “finite difference” to “eigenfunction expansion” interface is defined at plane 0, and
the “eigenfunction expansion” to “finite difference” interface is defined at plane 1. Both
partial interfaces are described below.

“finite difference” to “eigenfunction expansion” interface We match the tan-
gential electric field components at a selected plane (say plane i, = 0 in fig. 5.2.5) in the
following way:

S w(0)E, = E, (5.2.27)

i
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— e —
|

Figure 5.2.5: Two views of interface between the modal expansion algorithm and the stan-
dard FD-FD/FD-TD technique.
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where the series on the left hand side arises from the eigenfunction expansion algorithm,
and vector Et represents the field calculated using the standard finite difference method.
Assuming that the expansion functions are calculated for a constant frequency, i.e. wi =
const = w? and hence

0% =uwil (5.2.28)

we may make advantage of the orthogonality relations between intensity fields®. We reduce
the series in eq. (5.2.27) to a single term by taking the inner product with functions 7, x Hy.
We get:

ak(()) < Etk . Z_; X ﬁtk >=< Et . Zz X ]—_jtk > (5229)

This gives the equation for a;(0):

< E, -0, x Hy, >

ax(0) =

St X (5.2.30)
<Et/€'zz X Htk >

In order to reduce the computation time, functions Etk, ﬁtk should be normalized as
follows:

< Ep -0 x Hy, >=1 (5.2.31)

Eq. (5.2.30) reduces to:
ar(0) =< Ey -7, X Hy, > (5.2.32)

This may be written in the form of an integral, as follows:

ax(0) = //S B, 7. x Hds (5.2.33)

In the discrete domain, eq. (5.2.33) becomes:
A « (. 1.
ap(0) = ZZ [Axem (Zm + 3 iy, 220) . hyk (zx + Q’Z?J)
S U
+  Aye, (zm, iy + 37 220> Ry (zm, iy + 5)} (5.2.34)
where the fields are discretized in both methods in the same manner. If the eigenfunction
expansion part of the hybrid algorithm is based on the solutions of 2D finite difference

scheme, eq. (5.2.34) may be used directly as it is. Otherwise, the following expressions
should be used for calculating of functions hg;, and hy:

1 1 3 1

hzk (’Lx, iy + 5) = Al'Ay /_l /0 ka (’lx + Oy, iy + Oéy) dOédeéy (5235)
1 1 13

Ry <2x + 27 iy> = ArAy /0 / CHyk (ic + o 1y + o) dagday, (5.2.36)
-3

An analogous derivation may be carried out if one assumes that the expansion func-
tions are evaluated for 52, = const. In this case, matrix Z? in (5.2.11) becomes:

Z* =l (5.2.37)

3See appendix B.
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We use the orthogonality relations between flux density fields and normalize 5tk, étk as
follows:

< Dy, -7, X By, >=1 (5.2.38)

We calculate coefficients aj, at plane 0 in the following way:
ar(0) =< Dy - 7, X By, > (5.2.39)

This defines the interface as follows:
« [ 1 .
ZZ Azd, ( zy,zzo) on (zx + 5,'@)

1 1

where by, byr, are given by the following equations:

o 1
bk <zx,zy+§) = AxAy /,_/ By (g + 0, 1y + o) dodoy, (5.2.41)

1
by (zx—l— Q’Zy) = A:chy/ /% k(I + 0, 1y + ) dogdoy, (5.2.42)

“eigenfunction expansion” to “finite difference” interface In order to define the
interface from the eigenfunction expansion technique to the standard finite difference
scheme, we match the tangential electric field at a different plane denoted by i, = 1 in
fig. 5.2.5:

= ap(1)Ey, (5.2.43)
k
This may be written in the discrete domain as follows:

A 1.
€ (zz + i,zy,zzo) = Zak Cok ( + i,zy) (5.2.44)

A |
ey (zm,zy + 3 220) = Zak(l)eyk (zw, iy + 5) (5.2.45)

k

Egs. (5.2.44) and (5.2.45) define the interface.

5.3 General 3D subdomains

In this section, we present eigenfunction expansion technique with the space domain
decomposition, which does not make any assumptions about the uniformity of subdo-
mains. In the first step, we divide the domain into a set of subregions. A sample division
is shown in fig. 5.3.1.

Unlike in the previous case, the eigenfunction expansion is carried out in 3D. To this
end, every subregion is analyzed separately by closing it with the electric or magnetic
walls at the boundaries of the division. Each boundary between two regions corresponds
to two opposite walls, the electric on one side and the magnetic on the other. In order
to satisfy the continuity (field matching) condition, the electric and magnetic surface
currents are introduced. The electric surface current J_;j is defined at the electric wall



116 Fast finite difference numerical techniques ...

e clectric wall
m—— magnetic wall

Figure 5.3.1: Space domain decomposition in a general 3D approach.

and the magnetic surface current [?Z-j at the magnetic wall. J:j, I?ij denote currents at
the boundary in region ¢ determined by the field in the neighboring region j. They are

defined in terms of the tangential intensity field components in region j:

J; = —ixH, (5.3.1)
In the following section, we derive the algorithm for modeling general 3D structures
based on the presented space domain decomposition and on the eigenfunction expansion
technique. The eigenfunctions taken into expansion are the modes of each subdomain

being the solutions with the absence of coupling currents. In sec. 5.2.3, we introduce the
interface between the new technique and the standard 3D finite difference schemes.

5.3.1 Formulation of the algorithm

Let us write Maxwell’s equations for region ¢ adjacent to region j:

VxH = jwD;+.Jy (5.3.3)
VxE — —jub - R,
Putting (5.3.1), (5.3.2) into these equations, we get:
V x H = jwD;—ixH; (5.3.5)
VxE = —juB—ixE, (5.3.6)

Let us assume that we know the solution for region ¢ totally enclosed by perfect electric
and magnetic walls. These solutions are resonances occurring at wy with modal fields Ej
and H;,. The corresponding equations may be written as follows:

V x Hy, = jwinDy
V x Eyx = —jwinBir

Now, the fields in subregion ¢ are expressed by the series of modes Eik, ﬁzk

—

E; = Zaikﬁik (5.3.9)

k
H = > byHy, (5.3.10)
k
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with unknown coefficients a;, by. Putting (5.3.9), (5.3.10) into (5.3.5), we get:
szkv X ﬁzk = ]wZalkﬁlk — 7 X ]’_jj (5311)
k k
Using eq. (5.3.7), this leads to the following equation:
jZ(waik — Wzkbzk)ﬁzk =1 X ﬁj (5312)
k
We take advantage of the orthogonality relations between flux density and intensity fields

and apply a scalar product with a testing function Eim, to both sides of (5.3.12). This
reduces the series on the left hand side to a single term. We get:

j(waim — wzmblm) < ﬁima Ezm >=< 1 X ﬁj, Ezm > (5313)
It gives:
<nx H;: B, >
i — jaimbim = a2 (5.3.14)
< Dim7 Ezm >

Now, we expand the magnetic field in the outer region j into a series of modes, analogously
to eq. (5.3.10) written for region i:

H; =Y b;,H,j, (5.3.15)

We also assume that region ¢ may have common boundary with several outer regions j.
Eq. (5.3.14) becomes:

<1 X H]n,EZm >

b 5.3.16
7 < Dip, Eiy > ( )

jwazm jwzm im Z Z
J

Index j in the sum is swept over every neighboring region of subdomain 1.
In a similar manner, starting from (5.3.6), we may develop the following equation:

<1 X E]n,Hlm >

JWhim — JWimGim = — > D Qjn (5.3.17)
J

n < BzmaHzm >

Egs. (5.3.16) and (5.3.17) may be written in a form of a matrix eigenproblem:

w[ﬂ:lggé Qééuﬂ (5.3.18)

where coefficients A;y, j, and By, j, are defined as follows; if 7 # j:

Aimin = J B B (5.3.19)
Bimin = —j<ﬁXEj”’H’m> (5.3.20)

and for ¢ = j coeflicients A;y, j, and B;y,, j, are equal 0. Note, that the scalar products in
the numerators denote integrals over coupling surface S;; and the scalar products in the
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denominators are integrals over the entire volume V; of region i. For instance, eq. (5.3.19)

takes up the form:

— jffs”( - >q (5.3.21)
II1v, Dim - Eign dv

Also note, that if the region is surrounded by electric and/or magnetic walls, then:

m,jn
We may construct two other eigenproblems by extracting vector b from eq. (5.3.18):
wia=(Q-4)Q-Bla (5.3.23)

or extracting vector a:

(5.3.24)

Explicit update scheme In order to derive the explicit update scheme from
eq. (5.3.18), we rewrite it in the following form:

RS

where ¢ = jb. Eq. (5.3.25) may be solved using the explicit update leap-frog procedure
defined by the following equations:

oS
o 1

1 (5.3.25)

TP = AHQ — B)a' 405 (5.3.26)
a™ = AHQ —A)c +a’ (5.3.27)

Another explicit update algorithm may be constructed from eigenproblem (5.3.23):
0™ =20 ~AP(Q ~ A)Q ~B)la —a™ (5.3.28)
and from eigenproblem (5.3.24):
bit0% =2 — A(Q — B)(Q — A)p" 05 —pi 1S (5.3.29)

It is believed, that the algorithms defined by egs. (5.3.26), (5.3.27), (5.3.28), and (5.3.29)
are stable if the following condition is satisfied:

1
At < — (5.3.30)

T 2max; , Wik

5.3.2 Interface with Finite-Difference methods

In this section, we use the eigenfunction expansion algorithm presented in sec. 5.3.1 toge-
ther with the finite difference techniques to create a new hybrid procedure. In the new
approach, the eigenfunction expansion is applied for modeling of the subregions closed
with the virtual electric and/or magnetic walls. The standard finite difference technique
is used in the rest of the domain. Analogously to the technique presented in sec. 5.2.3,
the interface is defined at two planes of Yee’s grid. This is shown in fig. 5.3.2. “Finite
difference” to “modal expansion” interface is defined at plane 0. The interface working
in the other direction is defined at plane 1. Both partial interfaces are described below.



Chapter 5  Schemes involving space decomposition 119

FDFD /
MODAL
EXPANSION FDTD

Figure 5.3.2: Interface between the general 3D modal expansion algorithm and the standard
finite difference technique.

“finite difference” to “modal expansion” interface Eq. (5.3.18) including the

interface, becomes:
4= Q-4 a a’
w[b]_lg B 0 ]lb]—i_lb/] (5.3.31)

where the additional primed vectors are associated with the interface. If we use the
interface at a magnetic plane, coefficients 0}, vanish, and coefficients a}, are given by the
following equation:

W=
[

7l x Hy, Eg
ay, = —j< — > (5.3.32)
<E’ik7 le>
where Hyy denote the intensity magnetic field at the boundary. This field is calculated
using the finite difference procedure. Analogously, for the interface at an electric plane,
we get:

by =j——— (5.3.33)
and Eyq is the intensity electric field at the boundary. Coefficients a’, vanish in this case.

“modal expansion” to “finite difference” interface If the interface is defined at
the electric plane, we calculate the unknown electric field components at “finite difference
part” based on eq. (5.3.9) in the following way:

Efd = Zaikﬁik (5334)
k

Analogously, for the interface at the magnetic plane, we get:
Hia = by Hy (5.3.35)
i
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Chapter 6

Eigenfunction expansion techniques
for waveguides

6.1 Introduction

An important class of hybrid techniques discussed in chapter 5, involves the conversion of
a 3D finite-difference problem into 1D. This can be achieved whenever the subspace to be
analyzed is uniform in one direction and bounded in the other two. For such a case the
field distribution in the transverse direction is expanded in the series of eigenfunctions
and only one space coordinate needs to be discretized. This leads to the method which is
called the partial eigenfunction expansion (PEE). When the cross-section is homogeneous,
the eigenfunction expansion is straightforward both for time and frequency formulations.
This is because the subspace treated with the PEE algorithm is in fact a section of
a homogeneous waveguide and the eigenfunctions define the modal field distribution,
which, in this type of guides, does not depend on frequency. Hence, the eigenfunctions
can be calculated only once and then used as a basis both for frequency and time domain
analysis. When the cross-section in loaded with an inhomogeneous material, the basis is
more difficult to define. For inhomogeneous guides, the modal field distribution changes
with frequency and this implies that the field has to be evaluated again for each frequency
and it becomes unsuitable as a basis in time domain analysis. To overcome this one needs
to derive eigenfunction formulations for waveguides in which the field at each frequency
is well represented by the series involving functions that are independent of frequency.
In [52] modal fields evaluated at cutoff were proposed to this end. A similar basis was also
proposed by Rozzi et al. [66] in the context of fast evaluation of dispersion characteristics
in fin lines. Indeed, since the PEE is applicable to the sections of waveguides one may
develop formulations which are useful in the PEE by looking at the problem in more
general context of finding the frequency dependent characteristics and modal fields using
the expansion of fields into series of entire domain basis functions [57-59]*.

We start the presentation of the new algorithms from general operator investigations
performed in sec. 6.2. We introduce eigenfunction expansion algorithms for bidirectional
guides in sec. 6.3. In sec. 6.4, we give a note about practical aspects of calculation of the
basis.

!The PEE method based on eq. (5.2.11) given a priori in chapter 5, and developed here in sec. 6.3.1
as one of the eigenfunction expansion algorithms.

121
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6.2 (eneral operator investigations

The problem of finding dispersion characteristics of a waveguide in a general form may

be presented as the eigenproblem:
Lu = ABu (6.2.1)

where L, B are operators derived from Maxwell’s equations. The solutions of this equa-
tion (A, uy) are the eigenpairs with physical interpretation depending on the operators.
Usually (also in this thesis) Az is one of the variables 32, 3., wi, or wy, where (. is
the propagation constant of the kth mode for a fixed value of frequency, and wy, is the
angular frequency of the kth mode for a fixed value of propagation constant?. Function
uy, represents the field distribution of the kth mode. Operator L may be expressed as:

L =M +4N (6.2.2)

where 7 is a parameter. In practice, (A, ) represents one of the pairs: (3%, w?), (B.r,
w)a (wl?n 53)7 or (Wk, ﬁz)

Substituting (6.2.2) into (6.2.1), we get the following eigenproblem, which typically
has to be solved for a large number of values of 7:

(M +yN)u = ABu (6.2.3)

As a result, one gets the dispersion characteristic of the waveguide in the form (7).
Solving of eq. (6.2.3) using standard methods for a large number of values of parameter
~v may be very time-consuming. We present new methods of solving these eigenproblems
based on the knowledge of the solution at a few points (\;, v;, u;). General EE algorithms
are presented in sec. 6.2.1. In sec. 6.2.2, we introduce special cases of these methods which
take advantage of orthogonality relations between the fields. The latter class includes the
formulations which may directly be applied in the PEE algorithms in time and frequency
domain.

6.2.1 General form of eigenfunction expansion algorithms

Consider the eigenproblem of the form (6.2.3). We assume that we know the solution of
this eigenproblem at K discrete points v, va, ..., Vi

To find the solution for v # ~., we approximate function u by the series of known
eigenfunctions uy:

u= Z Ry (6.2.5)
k
Substituting (6.2.5) into (6.2.3), we get:
k k

Using (6.2.4), eq. (6.2.6) takes up the form:

2See sec. 3.5.3 for various formulations of eigenproblems in 2D electromagnetics.
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It is important to note, that operator M has vanished at this step. In practice, this means
significant simplification of the equation, since operator M is usually associated with a
complicated differential operator, and the remaining operators N and B are simple scaling
functions. Taking the inner product of both sides of (6.2.7) with testing functions p;, we
get:

Z ak(”y — ’)/k) (Nuk,pl> = Z ak()\ — )\k) (Buk,pl) (628)

k k

This equation may be presented in the form of a generalized matrix eigenproblem:
T(yL —L)a =V (A ~Aa (6.2.9)

with the elements of matrices ' and V. given by:

T = (Nug,p) (6.2.10)

Vie = (Bug,m) (6.2.11)
and A, ' being diagonal matrices:

A diag(Ax) (6.2.12)

L = diag(y) (6.2.13)

Solving of (6.2.9) yields the characteristics A(y) or v(\) depending on which of two vari-
ables, v or ), is treated as a parameter. For the fixed value of ~, eq. (6.2.9) has the
eigenpairs (A, @), and for fixed A, the eigenpairs are (7,,, @, ). The elements of eigen-
vectors a ,, are magnitudes of the eigenfunctions taken into expansion.

6.2.2 Eigenfunction expansion algorithms based on orthogonal-
ity relations
In the previous section we did not make any assumption about the testing functions p;.

Let us now assume, that they are the eigenfunctions wy, of the eigenproblem transposed
to (6.2.4):

(M* 4 3 NF)wy, = ;B wy., (6.2.14)
Taking into consideration the orthogonality between left and right eigenvectors of an
operator (see discussion in app. B), we see that if 74 = const(k) (i.e. 71 =72 = ... = Vk),

matrix V. defined by eq. (6.2.11) is diagonal. For the same reason, matrix I given
by eq. (6.2.10) is diagonal, when A\, = const(k). In both cases, the construction of
eigenproblem may be simplified. Since these cases are dual to each other, we limit the
discussion to a constant value of v, = 79. We may construct two eigenproblems for,

respectively, A and ~ being a parameter:

1
(M —A)"'Ba = e (6.2.15)

(v =10R +Ala = A (6.2.16)

The first formulation gives eigenvalues (7 — 79)~! and leads to characteristics in form

~v(A). In the second case, the eigenvalues are A, giving characteristics (). The elements
of matrix & are given by the equation:

Ry, = =21/ (6.2.17)
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Alternative forms of the eigenproblem are also possible.  Choosing functions
(BN~ HHa, as testing functions p; yields diagonality of matrix T in eq. (6.2.9). This
gives the following eigenproblem with parameter \:

R —A)a =(y—)a (6.2.18)
The eigenvalues are (7 — 7p) and the elements of matrix E are:

5 <BN71BU/§, wl*>
L <BUl, wl*)

(6.2.19)

6.3 Algorithms for bidirectional media

In the previous section, we introduced the EE algorithms in a general operator forms.
Here, we will substitute the eigenproblems for bidirectional waveguides formulated in
sec. 3.5.3 into those templates. We assume, that the waveguide is filled with nondisper-
sive materials, and hence may be described by equation of the form (6.2.3), with operators
M and N independent on A and 7. In sec. 6.3.1, we derive a general form of the EE algo-
rithms. In sec. 6.3.2, we present their special cases taking advantage of the orthogonality
relations between the field components.

6.3.1 General form

In order to define a general eigenfunction expansion algorithm for bidirectional waveguides
filled with non-dispersive materials, we start the analysis from wave equation (A.3.14).
This equation may be presented in the form (6.2.3), where the symbols are defined as
follows:

M = ZnGimM, ' DimZEy' + ZiuM ' Z G E, ' Dye (6.3.1)
N = —Z.M,'ZE; (6.3.2)
B =1 (6.3.3)
A= w? (6.3.4)
y = B (6.3.5)
u = d (6.3.6)

Further on, we follow the procedure presented in sec. 6.2.1. Since we did not make any
assumption regarding functions p;, they may be arbitrary. Here, we choose functions
p1 = Zimby, which are the left eigenfunctions of the operator®. As introduced in sec. 6.2.2,
this approach enables one to take advantage of the orthogonality relations between the
fields? if one of the variables w? or 3% has a fixed value independent of I. These cases are
discussed in sec. 6.3.2.

For the problem at hand, eq. (6.2.8) becomes:

Zakw — w?) (dy, Zmbu,) = Zak (82 = %) (ZMy ZeB dyg, Zanbus)  (6.3.7)

3Funct10ns by represent transverse magnetic flux densities corresponding to the points (w, 55;) from
the dispersion characteristics.
4See appendix B.
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The right side may be simplified by rearranging the operators in the inner product. We
get:

> ar(w? —w}) (du, Zmbu) = Y ar (52 — 82,) (e, Zmhure) (6.3.8)
k k

From this equation, we derive a generalized eigenproblem, which gives the eigenvalues 32
versus w or w? versus (3,. The eigenproblem is given by the following matrix equation
(compare to eq. 6.2.9):

G(WIL -9%a =Sl -Z%a (6.3.9)

where: Q2 = diag(w}), Z? = diag(42,), and the elements of matrices G and S are given
by the equations:

le = <dtkazmbtl*> (6310)
S = (et L) (6.3.11)

Analogous equation written for the magnetic fields has the form:

G"(W I —Q*b =S"(B2L —Z*)b (6.3.12)

zZ2= = -

The elements of eigenvectors a are the magnitudes of electric flux density (or electric
intensity) functions taken into expansion. The elements of eigenvectors b correspond to
the magnetic fields.

Equation (6.3.9) and its transposed counterpart (6.3.12) involve terms proportional
to w? and 3% and hence have the form which is suitable for the PEE algorithms. The
detailed description of the application or the wave equations given in this form for the
time and frequency analysis of uniform subdomains was given earlier in section 5.2.2 of
this thesis.

6.3.2 Algorithms based on orthogonality relations

According to the discussion performed in sec. 6.2.2, the EE algorithms may be simplified
if we fix one of the parameters A or «y in the original eigenproblem (6.2.3). This is due to
the orthogonality relations between the functions in the inner product. For the problem at
hand, this simplification takes place if we fix one of the variables w? or 3? when calculating
the basis. Both cases generate a set of eigenproblems which may be treated as separate
EE algorithms. All these techniques are listed below.

Basis for 5, = (.0 = const In this case, we use orthogonality relation (B.2.10).
Egs. (6.2.15), (6.2.16) generate two pairs of eigenproblems:

1

(WL -9Q%)"Aa = 5 a (6.3.13)
(WL -Q%)7Ab = 52%20 b (6.3.14)
(32— B)A+Q2%a = v (6.3.15)
(= 82)A"+2%b = w? (6.3.16)
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where Q% = diag(w}), and the elements of matrices A, A’ are given by the equations:

<etka thtl*>
Ay = 2T TR 6.3.17
" <dtla Zmbtl*> ( )
<htl<:> Zeeyy

Ay = Ao Zocu)
lk <btl7 Zedtl*>

(6.3.18)
Note, that matrices 2%, A and A’ do not depend on w or 8 and hence do not have to
be recalculated when sweeping the parameter. A similar situation takes place for the
remaining algorithms.

Eq. (6.2.18) leads to the following eigenproblems:

AWL-9Q%a = (82— Fha (6.3.19)
A'WL-Q2%b = (82— BL)b (6.3.20)
with Q2 = diag(w?), and A, A’ defined by:

x <Mttzedtk> ZeEtthbtl*>

A = 6.3.21
& <dtl> Zmbtl*> ( )

~ E¢tZmbi, ZonMis Zedy)

A/ _ < ttH4mVik, Hm tt He Wi« 6.3.22
. (b, Zedly.) (6:3.22)

If the fields are normalized as follows:
(dit, Zmbus) = € (6.3.23)

where £ # 0 is a constant, pairs of matrices A’, A and é’ , 4 are Hilbertian transpose of
one another (e, A’ =A" and A’ = AH).

Basis for w = wy; = const Now, we consider the basis constructed from modes at
frequency wp. The suitable orthogonality relation is given by eq. (B.2.12). From (6.2.15)
and (6.2.16), we get the following equations:

(BL-Z2%7"Ca = 55 (6.3.24)
1
2[ . Z2 —1 v/ - - . 39
(2L —27)C'b AL (6.3.25)
(W —w))C +2%)a = Pla (6.3.26)
(W —wd)C' +2%b = p% (6.3.27)

where Z? = diag(32,), and C', C' are defined as follows:

<dtk7 Zmbtl*>
C = —- 6.3.28
. <€tl, thtl*> ( )
bk, Zodyss)
o = M 6.3.29
lk <htl7 Zeetl*> ( )

The alternative algorithm (6.2.18) takes up the following form:
(2L —Z%a = (W’ =wha (6.3.30)
"(BL-2%b = (W —wpb (6.3.31)
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where Z? = diag(%,), and C', O are given by equations:

<M;tlze€tk, ZeEEtlzmhtl*>
(e, thtl*>

¢ (Ba Znhig, Zn M Zeen.)
<htl7 Zeetl*>

Cii (6.3.32)

(6.3.33)

6.4 Methods for calculation of EE basis
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frequency [GHz]

Figure 6.4.1: Sample dispersion characteristics of a waveguide, various bases and degen-
eration points.

In order to construct the EE eigenproblems presented in the previous sections, we
have to calculate the basis. At the first step we should choose points at the dispersion
characteristics of the analyzed waveguide at which the basis will be constructed. The
choice of these points may have large influence on the final results. Fig. 6.4.1 presents
sample dispersion characteristics and several possible bases® consisting of: static solutions
(circles), cutoff solutions (triangles), and modes at 23GHz (diamonds). In all these cases
we may take advantage of the orthogonality relations between the fields as described
earlier. However, there are more possibilities for this choice. Let us look at the desired
properties of the basis. The basis has to be minimal [38], i.e. none of its elements can be
a linear combination of the others. Otherwise, one of the matrices G or S in eq. (6.3.9)
will be singular. It is obvious, that the solutions for w, = wg = const or (.. = (.0 =
const give a minimal basis, if they do not contain points of degeneracy at the dispersion
characteristics®. Points of degeneracy are not present in the basis calculated for strictly
imaginary wy or for strictly real 3,,. This includes a static case (wy = 0) and cutoff

5See also fig. 5.2.3.
6These are points at which two strictly real or strictly imaginary modes change their character giving
a pair of two coupled complex modes.
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Once the points for the basis have been chosen from the dispersion characteristics,
we have to find distributions of the appropriate field components at these points. This
requires solving one or a few eigenproblems developed in sec. 3.5.3 using a standard
method. Both, the electric and magnetic field components have to be determined. How-
ever, there is no need to solve of a pair of eigenproblems, one for the electric and the
other for the magnetic field. The electric field may be calculated from the magnetic one
(and vice versa) using Maxwell’s equations. Therefore, it is enough to solve only one
eigenproblem corresponding to one field component and find the other from the relations
between the fields. Such an approach is presented in sec. 6.4.1.

Further reduction of the computation effort during construction of the basis may be
achieved if it is built from the static modes or the modes at cutoff. In both these cases, it
is enough to solve two smaller scalar eigenproblems instead of a big one. This leads to the
determination of the longitudinal field components e, and h,. The transverse fields are
found based on Maxwell’s relations. Procedures for determination of the transverse field
components at cutoff and in the static case are presented in, respectively, secs. 6.4.2 and
6.4.3. It should be noted, that the eigenfunctions being solutions of the eigenproblems for-
mulated in sec. 3.5.3 are basis functions, and such functions have to be determined. With
appropriate scaling, these functions become the field distributions for the corresponding
modes. In some cases the basis function exists but the corresponding field distribution
vanishes. It means, that this function has zero amplitude. Such a situation takes place in
the case of the static solutions and the modes at cutoff. For instance, modes E at cutoff
have the longitudinal field component e, (d.) and the transverse field h; (b;). All the
other fields vanish. In other words, basis function e; has zero amplitude.

6.4.1 Basis constructed from an arbitrary set of modes

When constructing a basis in a general case, the electric transverse field components may
be calculated from the magnetic ones and vice versa. In order to find such a relation, we
may use the four field components formulations for bidirectional waveguides presented in
tab. 3.5.7. Expressing e; in terms of the magnetic field, we get:

w 1
e = —Ezmbt —+ w—ﬁzGteEgletetht (641)
An analogous equation for h; in terms of the electric fields has the form:
w 1
ht = EZedt -+ w—ﬁzGth;Dtheet (642)

If basis functions are to be found instead of the actual field distribution, we may use these
equations also for 3, = 0 disregarding factors é Note, however, that some of the cutoff
field components have zero amplitude in the real field distribution.

Egs. (6.4.1), (6.4.2) have two dual counterparts, which may also be used as relations
between electric and magnetic fields (compare with the formulations in tab. 3.5.8):

2 1 _
d, = —ﬁ—zmht + ——ZmGtmM_, Dimb (6.4.3)
w Bw
B 1 1
bt = —Zeet — —ZtheEZZ Dtedt (644)
w B.w

These equations may also be used for building the basis in static case (w = 0), if one

disregards factors L.
w
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6.4.2 Basis consisting of modes at cutoff

For 5., = 0, i.e. at cutoff, the modes are of type TM (h, = 0) or TE (e, = 0). In this
case, formulations for the transverse field components presented in tab. 3.5.9 may be split
into two scalar eigenproblems, for e, and h, field components (tab. 3.5.10):

B, DiZmM; ZeGrees; = wies; (6.4.5)
M, DimZeEg' Zim Gemhz; = wijhe;
Note, that the size of the problems is reduced by a factor of two.
The solutions of egs. (6.4.5) and (6.4.6) are, respectively, eigenpairs (w.;, €;) and (wp;,

h;), from which we calculate the transverse field components. The appropriate equations
for modes TM have the form:

biej = —ZoGrets; 6.4.7
tej e teCzj ( )
htej = M&lbtej (648)
1
Ctej wejzmbtej + —GteE;letethtej (6 49)
ej
dtej = Ettetej (6410)
For modes TE, we use the following equations:
1
dinj = — 2 Gimh.; 6.4.11
thj Jwn; t J ( )
emj = Eg'dg (6.4.12)
1
hanj —  wnjZiedun; + w—Gth;letheethj (6.4.13)
hj
bing = Mithung (6.4.14)
Expressions for basis functions e;.; and hy,; ((6.4.9) and (6.4.13)) are, respectively, (6.4.1)

and (6.4.2) with scaling factor - omitted. These functions have zero amplitude in the

Bz
actual field distribution.

6.4.3 Basis consisting of static modes

For w; = 0, the modes are of the type E or H. The longitudinal field components corre-
sponding to these modes are the solutions of the following two scalar eigenproblems (from
tab. 3.5.10) related to, respectively, modes E and H:

Ez_leteEttheezj = 522@j€zj (6.4.15)
M;lethtthmhzj = Zzhjhzj (6.4.16)

The transverse field components are calculated from the following equations. For modes

E:

€tej = T Giee: 6.4.17
e jﬁzej ¢ ! ( )
dte] = Ettetej (6418)
1
btej — ﬁzejzeetej - FZtheEgletedtej (6419)
zej
htej - Mt_tlbtej (6420)
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and for modes H:

1
hi = Gl 6.4.21
t jﬁzhj ¢ ! ( )
binj = Meghu; (6.4.22)
1
dinj _ﬁzhjzmhthj‘I'ﬁ—ZmGthZ_ZlDtmbthj (6.4.23)
zhj
emj = Eg dn; (6.4.24)

Formulae (6.4.19), (6.4.23) correspond to (6.4.4) and (6.4.3) respectively, with factor L
disregarded.

6.5 Fast analysis of waveguides

The algorithms developed in this chapter can all be used for fast analysis of the dispersive
properties of waveguides. Finding dispersion characteristics of a waveguide is a very
common problem in electromagnetics. In chapter 3, we presented methods of solving this
problem based on a discretization of various formulations of dispersion equation with the
finite difference method. In practice, such an approach requires construction and solving
of a large and complicated boundary value problem for a large number of frequencies
or propagation constants depending on the choice of a parameter being swept. Such
an approach may be very inefficient as the numerical complexity associated with finding
eigenvalues is identical at each point. The eigenfunction expansion algorithms developed
in this chapter can radically reduce the computation effort. The standard finite difference
procedure described in chapter 3 is used only at a few points chosen from the dispersion
characteristics (eg. at cutoff, static, or any other arbitrary case). These solutions are
used as a basis for the field expansion”. Using this basis and the method of moments the
dispersion equation is converted into a matrix eigenproblem with a small dense matrix
operator. The numerical complexity is dramatically reduced compared to the traditional
approach.

In order to compare the time performance of the presented algorithms versus standard
methods, we define the following variables:

N — number of frequency / propagation constant points
M — number of modes to be found

M.. — number of modes used in EE

lssa — calculation time in one standard eigenproblem

tee — calculation time in one EE eigenproblem

The total time in the standard method is given by the equation:
Tstd =N- tstd(M) (651)

The total time required by the EE procedure in its general form may be estimated from
the following formulae:
Tee = Mee - tsta(1) + N - tee (M) (6.5.2)

"In fact, the method used for calculation of the basis is not important in this method. We use the
finite difference method here but any of the techniques, including FEM or SDA, can be used when deemed
more appropriate for the problem at hand.
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For the algorithms based on the orthogonality relations this takes up the form:
Tee = tsga(Mee) + N - tee(M) (6.5.3)

Note, that we do not take into account the time required to construct the matrices, which
in practice is very small in comparison with the time of solving an eigenproblem. The
speedup of EE method over the standard method is given for the first case:

N - tgq(M)
S = 6.5.4
Mee : tstd(l) + N - tee(M) ( )

and in the second case: Nt (M
g tsta(M) (6.5.5)

tstd(Mee) + N - tee(M)

For large value of frequency or propagation constant points, in both cases, the speedup

reaches its limit value:
tstd(M)

—

tee(M)

Since the size of the EE eigenproblems are much smaller than in the case of the standard
algorithms, the speedup may be significant.

(6.5.6)
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Chapter 7

Numerical results

7.1 Introduction

In the previous chapters, we presented various methods improving the standard finite-
difference methods for electromagnetic problems. All these new algorithms require veri-
fication. Therefore, a series of numerical tests have been performed. The results of these
tests are presented further on, in this chapter. It should be noted, that the numerical
tests presented later were chosen from much larger set of tests performed to validate the
algorithms. The results of these and the other tests prove that the techniques presented in
the previous chapters satisfy all the required conditions for the entire range of parameters.

7.2 Basic algorithms for 2D structures

In this section, we present the results of the tests for 2D structures. In sec. 7.2.1, we
deal with a test reducing the numerical dispersion error. In the following sections, we
test various waveguides successively adding new elements to them, in order to test all
the local algorithms presented in chapter 4: modeling of metal walls (sec. 7.2.2), dielec-
tric boundaries (sec. 7.2.3), and conductive wedges placed in homogeneous (sec. 7.2.4)
and inhomogeneous domains (sec. 7.2.5). As a benchmark, we use the cutoff frequencies
calculated using the finite-difference frequency-domain method by solving matrix eigen-
problems derived from two first formulations from tab. 3.5.10. These frequencies are
compared with reference values, which are the cutoff frequencies calculated analytically
or via extrapolation of the results for various grid sizes. If the waveguide is homoge-
neous, there is no need to make any other tests, since the dispersion characteristics are
strictly determined by the cutoff frequencies. In the case of inhomogeneous waveguides, we
also perform the tests for the static case analyzing the attenuation constants. These tests
involve solving matrix eigenproblems arising from the static formulations from tab. 3.5.10.

In all performed calculations, we assumed that the speed of light in the vacuum! is
equal to ¢ = 3-10%m - s7L.

IMore exact value of ¢ is 2.997928 - 108m - s~ 1

1533
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7.2.1 Numerical dispersion

As shown in sec. 2.3.1, results of finite-difference methods are affected by the numerical
dispersion error. We presented a method for the estimation of this error deriving a
correction factor minimizing this error. In this section, we present an example of the
estimation and the minimization of the numerical dispersion error in the case of the
numerical analysis of a rectangular waveguide.

6mm

5mm

(a) (b) ()

Figure 7.2.1: Rectangular waveguide (a) and the same structure placed in Yee’s grid: nodes

E. H, H, (b) H,, E,, E, (c).

The waveguide is shown in fig. 7.2.1(a). It has dimensions of Smmx6mm and is
filled with the vacuum. The structure is covered with Yee’s mesh with the grid steps
Az = Ay = 0.5mm, i.e. 10x12 grid (see figs. 7.2.1(b,c)). The metal walls are placed on
the appropriate nodes of the tangential electric field. This guarantees that the metal walls
do not introduce any error into the results. The only source of errors, in this case, is the
numerical dispersion. During the test, we calculate cutoff frequencies of the waveguide
solving matrix eigenproblems arising from first two formulations given in tab. 3.5.10. The
results are compared with the frequencies calculated analytically.

The results for the lowest order modes are presented in tab. 7.2.1. The table shows
the analytical cutoff frequencies (fif) and the calculated frequencies together with the
relative errors. The next two columns show the same quantities after correction. The
actual error level after the correction is placed between —A/2 and A/2, where A is the
estimated error level calculated from eq. (2.3.55). A/2 is shown in the last column of the
table.

For example, let us look at modes TM;;, TE;;. The cutoff frequency calculated
analytically is about 39.05GHz. The solution of the finite-difference eigenproblem gives
in this case the result about 38.91GHz which is 0.36% smaller than the exact value. The
correction of this result leads to 39.11GHz with the relative error of 0.16%. It is clearly
seen, that this error is in the range —A/2...A/2 (A/2 in our case is 0.17%).

One may note that the actual error after correction in some cases (modes TEg2, TEq,
TE3) slightly exceeds the estimated error range. In the worst case, for mode TEj, this
error is of order 0.72%, when the estimated level A/2 is 0.61%. This is due to the fact,
that the analysis of the numerical dispersion error performed in sec. 2.3.1.1 was based
on approximation (2.3.13), and hence was not exact. Although this effect may grow up
for higher order modes, it is not meaningful in the practical cases when the error level is
small.
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Table 7.2.1: Cutoff frequencies of the rectangular waveguide calculated analytically and
using the finite-difference algorithm before and after correction of the numerical dispersion
error.

Before correction After correction
| Mode | fiet[GHz] | f[GHz] | err[%] | f[GHz] | err[%] | A/2[%]
TEy; 25.00 24.93 -0.29 | 24.98 -0.07 0.07
TEq 30.00 29.88 -0.41 | 29.97 -0.10 0.10
TMy; | TEq; 39.05 38.91 -0.36 | 39.11 0.16 0.17
TEg» 50.00 49.43 -1.14 | 49.85 -0.30 0.28
TMiy | TEq 58.31 57.76 -0.95 | 58.43 0.21 0.38
TE, 60.00 59.02 -1.64 | 59.74 -0.44 0.40
TMy; | TEo 65.00 64.07 -1.44 | 64.99 -0.02 0.47
TEgs3 75.00 73.09 -2.55 | 74.46 -0.72 0.61
TMy, | TE, 78.10 76.98 -1.43 | 78.60 0.63 0.68

Fig. 7.2.2 presents the error level A/2 for homogeneous and inhomogeneous structures
for cutoff modes versus the cutoff frequency (fig. 7.2.2(a)) and for static modes versus the
static attenuation constant (fig. 7.2.2(b)). The homogeneous structures are filled with
the vacuum and the inhomogeneous ones are filled with the vacuum and dielectric of
parameters €, = 4, u, = 1. Note, that the data in fig. 7.2.2(a) corresponding to the
homogeneous structures are valid in particular for the rectangular waveguide analyzed in
this section, and hence match the values of A/2 in tab. 7.2.1. The data from fig. 7.2.2
will serve as a reference for further tests.
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Figure 7.2.2: Numerical dispersion error level for homogeneous and inhomogeneous struc-
tures for cutoff modes versus the cutoff frequency (a) and for static modes versus the static
attenuation constant (b). The inhomogeneous structures are filled with the vacuum and
dielectric of parameters €, =4, p, = 1.
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7.2.2 Location of metal walls

In order to test the algorithm for modeling of metal planes, we analyze the same rectan-
gular waveguide as in the previous section but shifting the structure with respect to Yee’s
grid by a normalized distance —0.5 < z;/Az < 0.5, —0.5 < y;/Ay < 0.5. This covers
every possible location with respect to the grid. Possible positions of the metal walls are
shown in fig. 7.2.1(b,c) as a dark region. Note, that position (0,0) corresponds to the
situation from the previous section, where the only source of errors is the numerical dis-
persion. The errors are calculated with respect to the analytical solution. The correction
of the numerical dispersion is performed. Fig. 7.2.3 shows patterns of the relative errors
in the calculated cutoff frequencies versus the normalized position of the structure for the
lowest order TM and TE modes. For instance, the relative errors for mode TMy; take up
the values from range 0.18% ...0.34%. The largest error is, hence, two times larger than
the error level due to the numerical dispersion A/2 which, for this frequency, is 0.17%
(from tab. 7.2.1 or fig. 7.2.2(a)). The variation of the error, about 0.16%, is comparable
with the numerical dispersion. One may note, that the error patterns for TM and TE
modes with the same indices are the same (eg. modes TM;; and TE;; in the figure).
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Figure 7.2.3: Contours of relative error [%] of the cutoff frequencies of TM modes (a)
and TE modes (b) versus normalized location of the rectangular waveguide with respect to
Yee’s cell.
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Rotation In the test described above, the metal walls were, in every case, parallel to
one of the field components of Yee’s grid. In order to test the algorithm for modeling
of metal walls in a more general case, we rotate the structure with respect to its center.
Fig. 7.2.4 shows three locations of the waveguide in the grid, at angles 0°, 22.5° and
45°. Electric nodes are blue, magnetic nodes are red and removed nodes are green. The
waveguide was rotated from 0° to 45° with step 1°. The cutoff frequencies were calculated.
Fig. 7.2.5 shows the relative error of the cutoff frequencies of TM and TE modes. Top
charts correspond to the staircase approximation. The errors, in this case, are very
large reaching level of about 5% for mode TEq; or even 9% for mode TM;. Results
corresponding to the new algorithm are shown in the bottom. We may see, that the error
is highly reduced with the level comparable with the numerical dispersion (below 0.5%)
for modes TEq; and TMy;.

It has to be underlined, that rotation does not change the norm maximum of the
operator, so there is no need to change the time step in the FD-TD.
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Figure 7.2.4: Rotation of the rectangular waveguide in Yee’s mesh. 0°,
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7.2.3 Location of dielectric boundaries

In addition to the error caused by the location of metal walls an error may be introduced
by location of boundaries between dielectrics. In order to test such a case, a structure from
fig. 7.2.6 was analyzed using the finite-difference algorithm. This structure is a rectangular

3mm
™M
o
-
o

1.5mm
m
[N
=
[N

Figure 7.2.6: Inhomogeneous rectangular waveguide (a) and the same structure placed in
Yee’s grid: nodes E,, H,, H, (b) H,, E,, E, (c). e, =4ey. p11 = po.

waveguide loaded inhomogenously, with two dielectrics of permittivity, respectively, ¢y and
4eg. The waveguide supports modes of type LSE and LSM with respect to the vertical
axis. The structure was shifted, taking every possible location with respect to 20 x 18
Yee’s grid (Ah = 0.25mm). All possible locations of the boundaries are shown for 10 x 9
grid in figs. 7.2.6(b,c) as dark regions. Fig. 7.2.7 shows the contours of the relative errors
in the calculated cutoff frequency with respect to the normalized position. The reference
cutoff frequencies were calculated using the transverse resonance method [34,57]. The
same data was obtained by extrapolating the results of the finite-difference frequency-
domain method with varying grid size. Since the structure is inhomogeneous, the static
solutions are not in a simple relation to the cutoff solutions. Therefore, in addition to the
cutoff case, we solved the matrix eigenproblems corresponding to the static formulations
from tab. 3.5.10. This produced, for all locations of the structure, the contour plots given
in fig. 7.2.8 showing the relative errors in the attenuation constant for the static modes.
The errors for mode LSE;; are in the range 0%...0.15% at cutoff and —0.04%...0.10%
in the static case. The variation of these errors is comparable to the numerical dispersion
error level, which is about 0.2% at cutoff (blue line in fig. 7.2.2(a)) and about 0.1% for
the static solution (blue line in fig. 7.2.2(b)).
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Figure 7.2.7: Contours of relative error [%] of the cutoff frequencies of LSE modes (a) and
LSM modes (b) versus normalized location of the inhomogeneous rectangular waveguide
with respect to Yee’s cell.
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Figure 7.2.9: Rotation of the inhomogeneous rectangular waveguide in Yee’s mesh. 0°,
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Figure 7.2.10: Relative error [%] of the cutoff frequencies of LSE (a) and LSM modes
approzimation (top) and the new algorithm (bottom).
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Rotation In order to test the algorithm in a more general case, we rotate the structure
with respect to the grid versus the center of the waveguide. Three positions of the wave-
guide, at angle 0°, 22.5° and 45° are presented in fig. 7.2.9. The results of calculating cutoff
frequencies of the rotated waveguide are shown in fig. 7.2.10. The charts show the relative
error in the calculated frequency for modes LSM and LSE. The results corresponding to
the staircase approximation are given at the top. The staircase approximation here means
no modeling of metal walls nor a dielectric boundary. The error levels are large. In the
worst case for mode LSM;, we get about 4%, and for mode LSE; we get about 8%. The
error level is significantly reduced for the modified algorithm (bottom charts). Fig. 7.2.11
corresponds to solving of static equations. The figure shows the relative error of the static
attenuation constants. Again, the top charts correspond to the staircase approximation
and the bottom charts to the new algorithm. Also in this case, we observe large errors
for the staircase algorithm and significant reduction of these errors for the new approach.

Error [%)]
Error [%]
i

. I I I I I I I I I I I I
0 5 10 15 20 2! 30 35 40 45 0 5 10 15 20 25 30 35 40 45
Angle [deg] Angle [deg]

1 T T T T T T T T 0.8

07k : : : H2

06 -

0.5 — H6

0.4r-

Error [%]

I I I I I I I I — I I I I I I I I
5 10 15 20 25 30 35 40 45 “o 5 10 15 20 25 30 35 40 45
Angle [deg]

(a) (b)

Figure 7.2.11: Relative error [%] of the static attenuation constants of LSE (a) and LSM
modes (b) versus angle between the inhomogeneous rectangular waveguide and Yee’s grid:
staircase approximation (top) and the new algorithm (bottom).
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7.2.4 Conductive wedges in homogeneous domains

In this and the next section, we deal with the structures containing conductive wedges.
Here, we test a homogeneous waveguide with a single metal wedge placed in the symmetry
plane. The structure is shown in fig. 7.2.12(a).

2mm

6mm
I
1
I

5mm

(a) (b) (c)

Figure 7.2.12: Single-wedge line (a) and the same structure placed in Yee’s grid: nodes
E. H,, H, (b)H,, E,, E, (c).

As discussed in sec. 4.6, the metal wedge may lead to singularity of some of the
field components and cause significant errors when using the standard finite-difference
methods. Therefore, we developed a modification of the standard methods which should
reduce the errors associated with singularities. In this section, we test the new algorithms.
We also perform tests with the standard methods without modeling of the wedge in order
to show how the new methods improve the accuracy.

The tests with the standard methods were performed for the grid sizes: 10x12, 20 x 24,
40 x 48, 80 x 96, 160 x 192. (The location of grid nodes for three field components and for
10 x 12 grid (Ah = 0.5mm) is presented in figs. 7.2.12(b,c) for TM and TE polarization
respectively.) The structure is placed in Yee’s mesh with the metal planes coinciding with
the tangential electric field, so that the location of the walls does not introduce any error
into the results. As in the previous sections, we calculate the cutoff frequencies of the
waveguide. The results for various grid sizes are extrapolated and the extrapolated values
are used as a reference. The frequencies and the relative errors are presented for modes
TM and TE in, respectively, tabs. 7.2.2 and 7.2.3.

Since the test model has a plane of symmetry, we may expect the even and odd modes
with respect to this plane. The odd modes (TM,, TE,) do not contain singularities and
therefore we do not expect significant errors in this case. This is because the symmetry
plane has the properties of the electric wall, which cancels the influence of the edge corner
to the field. The largest errors may be expected for the even modes (TM,, TE,), where
some of the field components may become singular at the edge (see fig. 7.2.13 showing the
field distribution for the even modes). The tables show, as expected, that the errors for
the odd modes are relatively small, and are caused only by the numerical dispersion. For
instance, the cutoff frequencies of modes TM,, TE,; calculated using the standard finite-
difference algorithm with 10 x 12 Yee’s grid are, respectively, 0.21% greater and 0.10%
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Table 7.2.2: Cutoff frequencies [GHz] of TM modes of the single-wedge line calculated with
the standard finite difference algorithm.

10x12 | 20x24 | 40x48 | 80x96 | 160x192 Ext.

TM,; | 48.01 | 47.31 | 46.99 | 46.83 46.75 | 46.6693
2.87% | 1.38% | 0.68% | 0.34% | 0.17%

TM,p | 58.43 | 58.34 | 58.32 | 58.31 58.31 58.3095
0.21% | 0.05% | 0.01% | 0.00% | 0.00%

TMgo | 71.84 | 7177 | 71.73 | 71.72 71.72 71.7135
0.18% | 0.08% | 0.03% | 0.01% | 0.01%

TMyo | 78.60 | 78.23 | 78.13 | 78.11 78.10 78.1025
0.63% | 0.16% | 0.04% | 0.01% | 0.00%

Table 7.2.3: Cutoff frequencies [GHz] of TE modes of the single-wedge line calculated with
the standard finite difference algorithm.

10x12 | 20x24 | 40x48 | 80x96 | 160x192 Ext.
TEqop | 18.90 | 19.29 | 1948 | 19.57 19.62 19.6686
-3.90% | -1.95% | -0.97% | -0.49% | -0.24%
TEq1 | 29.97 29.99 | 30.00 | 30.00 30.00 30.0000
-0.10% | -0.03% | -0.01% | -0.00% | -0.00%
TEeo | 35.55 35.60 | 35.63 | 35.64 35.65 35.6614
-0.32% | -0.18% | -0.09% | -0.05% | -0.02%
TEqy | 49.85 49.96 | 49.99 | 50.00 50.00 50.0000
-0.30% | -0.07% | -0.02% | -0.00% | -0.00%
TEe3 | 55.75 56.05 | 56.20 | 56.26 56.30 56.3326
-1.04% | -0.50% | -0.24% | -0.12% | -0.06%
TEq3 | 58.43 08.34 | 58.32 | 58.31 58.31 58.3095
0.21% | 0.05% | 0.01% | 0.00% | 0.00%
TEqg | 59.74 99.94 | 59.98 | 60.00 60.00 60.0000
-0.44% | -0.10% | -0.03% | -0.01% | -0.00%
TEqq | 64.73 64.93 | 65.02 | 65.06 65.08 65.1046
-0.58% | -0.27% | -0.13% | -0.07% | -0.03%
TEe5 77.02 7029 | 7736 | 77.39 77.39 77.3994
-0.49% | -0.14% | -0.05% | -0.02% | -0.01%
TEq5 | 78.60 78.23 | 78.13 | 78.11 78.10 78.1025
0.63% | 0.16% | 0.04% | 0.01% | 0.00%
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Table 7.2.4: Cutoff frequencies [GHz] of TM modes of the single-wedge line calculated with

the finite difference algorithm with modeling of the wedge.

Ref. 10x12 | 20x24 | 40x48 | 80x96

TMgq | 46.6693 | 46.76 | 46.67 | 46.66 | 46.67
0.19% | 0.01% | -0.01% | -0.01%

TM,1 | 58.3095 | 58.43 | 58.34 | 58.32 | 58.31
0.21% | 0.05% | 0.01% | 0.00%

TMgo | 717135 | 71.84 | 71.75 | 71.72 | 71.72
0.18% | 0.05% | 0.01% | 0.00%

TMyo | 78.1025 | 78.60 | 78.23 | 78.13 | 78.11
0.63% | 0.16% | 0.04% | 0.01%

Table 7.2.5: Cutoff frequencies [GHz] of TE modes of the single-wedge line calculated with

the finite difference algorithm with modeling of the wedge.

Ref. 10x12 | 20x24 | 40x48 | 80x96

TEqq | 19.6686 | 19.67 | 19.68 | 19.67 | 19.67
0.02% | 0.04% | 0.03% | 0.01%

TEy7 | 30.0000 | 29.97 | 29.99 | 30.00 | 30.00
-0.10% | -0.03% | -0.01% | -0.00%

TEqo | 35.6614 | 35.68 | 35.67 | 35.66 | 35.66
0.04% | 0.01% | 0.01% | 0.00%

TEqy9 | 50.0000 | 49.85 | 49.96 | 49.99 | 50.00
-0.30% | -0.07% | -0.02% | -0.00%

TEe3 | 56.3326 | 56.29 | 56.33 | 56.33 | 56.33
-0.08% | -0.01% | 0.00% | 0.00%

TEq3 | 58.3095 | 58.43 | 58.34 | 58.32 | 58.31
0.21% | 0.05% | 0.01% | 0.00%

TEy4 | 60.0000 | 59.74 | 59.94 | 59.98 | 60.00
-0.44% | -0.10% | -0.03% | -0.01%

TEeqq | 65.1046 | 65.06 | 65.10 | 65.11 | 65.11
-0.07% | -0.00% | 0.00% | 0.00%

TEes | 773994 | 77.07 | 7733 | 77.38 | 77.40
-0.43% | -0.09% | -0.02% | -0.01%

TEq5 | 78.1025 | 78.60 | 78.23 | 78.13 | 78.11
0.63% | 0.16% | 0.04% | 0.01%
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Figure 7.2.13: Field distribution of the even modes of the single-wedge line

smaller than the exact value. Note, that these errors are smaller than the numerical
dispersion error which, as can be read from fig. 7.2.2(a), are: about 0.4% for TM,; cutoff
frequency (58.21GHz) and about 0.1% for TE,; cutoff frequency (29.94GHz). For the
even modes, however, the errors are significant. In the case of 10 x 12 grid the method
produces 2.87% of the relative error for mode TM.; and -3.90% for mode TE.;, which
is much more than might be expected if only the numerical dispersion errors were taken
into account (from fig. 7.2.2(a), respectively, about 0.3% and 0.05%).

Tabs. 7.2.4 and 7.2.5 present the results for the modified finite-difference algorithm
with modeling of the conductive edge described in sec. 4.6.2. The results show that the
new algorithm has no influence on the odd modes. This is a desirable property of the
algorithm, since, as noted, the odd modes have no singularity in the field. The entries
corresponding to the odd modes are the same as in tabs. 7.2.2 and 7.2.3, and as before, the
errors are caused only by the numerical dispersion. Significant improvement in accuracy
of the calculations is observed in the case of the even modes. The errors caused by the
edge corner are practically canceled. In the case of 10 x 12 grid the new method produces
0.19% of the relative error for mode TM,; and 0.02% for mode TE,;, which is comparable
with the corresponding cases for the standard method with 160 x 192 grid (0.17% and
-0.24% respectively).

In order to show the ability of the new algorithm to handle various locations of the
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conductive edge with respect to the grid, the structure is shifted in x — y plane as in the
previous sections. (Dark regions in figs. 7.2.12(b,c) again indicate possible location of the
boundaries.) Note, that the results for position (0,0) correspond to the frequencies from
the tables discussed above.

Figs. 7.2.14 and 7.2.15 present the relative error contours versus the normalized posi-
tion of the model for the cutoff frequencies of, respectively, modes TM and TE calculated
using the standard (plots (a)) and modified (plots (b)) finite-difference algorithms with
10 x 12 grid. We may note large errors and large dependency of these errors on the
position in the case of the even modes and the standard method. For mode TM,; we get
the error range about 0% ...7% and for mode TE,; the error range is about —8% . ..0%.
In both cases the errors are significantly reduced when using the modified algorithm.
For both modes, we get the error ranges, respectively, 0.2%...0.8% and —0.2%...0.6%.
Although the error is significantly reduced, its variation is larger than the level of the
numerical dispersion (respectively, about 0.3% and 0.05%). For the odd modes the errors
are not significant in both the standard and the modified algorithms, and the ranges are
comparable with the level of the numerical dispersion error.

Rotation Like in the previous sections, the second test concerns rotation of the struc-
ture with respect to the grid. Now, however, the waveguide is rotated versus the edge as
shown in fig. 7.2.16. The relative error in the calculated cutoff frequency versus the angle
is shown in fig. 7.2.17. The staircase approximation, as shown in the top charts, leads to
large errors reaching about 8% in the case of mode TE,; and over 13% for mode TM,;.
The staircase approximation, in this case, means no modeling of metal walls and the edge.
The bottom charts, corresponding to the new method, show significant reduction of the
error.

Stability of the explicit update scheme For all the locations of the structure with
respect to Yee’s mesh, positiveness and the spectral radius of the operator were tested.
The tests showed, that the algorithm for modeling of a conductive wedge has no influence
on these properties. Therefore, the standard stability condition for the explicit update
schemes, given for 2D by eq. (3.8.27), is not changed.
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Figure 7.2.14: Contours of relative error [%] of the cutoff frequencies of TM modes versus
normalized location of the structure with respect to Yee’s cell for the finite difference
algorithm without (a) and with (b) correction.
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Figure 7.2.15: Contours of relative error [%] of the cutoff frequencies of TE modes versus
normalized location of the structure with respect to Yee’s cell for the finite difference
algorithm without (a) and with (b) correction.
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Figure 7.2.16: Rotation of the single-wedge line in Yee’s mesh. 0°, 22.5°,
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7.2.5 Conductive wedges in inhomogeneous domains

The algorithm for modeling of conductive wedges presented in sec. 4.6.2 may also handle
wedges placed in an inhomogeneous region. In order to test such a case, we numerically
analyze the structure shown in fig. 7.2.18. This is a rectangular waveguide with a single

2mm
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|_\
-
=

Figure 7.2.18: Inhomogeneous single-wedge-line (a) and the same structure placed in Yee’s
grid: nodes E,, H,, H, (b) H,, E;, E, (c). e, =4¢ey. 11 = po-

conductive wedge placed on the boundary between two dielectrics. Analogously to the
previous section, we present the cutoff frequencies of this structure and the corresponding
relative errors calculated for various grid sizes with the standard and the modified finite-
difference algorithms. The results for the standard method are shown for modes E and
H in tabs. 7.2.6 and 7.2.7, respectively. The results of the modified method are given in
tabs. 7.2.8, 7.2.9. One may observe significant reduction of error in the case of modes E;
and H; for grid 20 x 18. In these cases, the standard method produces errors 1.36% and
—3.23%. The use of the new approach reduces these errors to the levels 0.12% and 0.05%
and this is less than the level of the numerical dispersion (respectively, about 0.3% and
0.05%).

Since the analyzed waveguide is inhomogeneous, the cutoff and static solutions are not
simply related to each other. Therefore, we performed separate tests for the static case.
The results are given in tabs. 7.2.10, 7.2.11 (the standard algorithm) and 7.2.12, 7.2.13
(the new technique). Also in this case, the errors are notably reduced (eg. from —2.52%
to 0.04% (the level comparable with the numerical dispersion) in the case of mode Hy).

Analogously to the tests from the previous sections, we shifted the waveguide in the
x — y space testing the influence of the positioning of the structure relative to Yee’s grid
on the error level. The results for the standard and modified algorithms are shown for
the case of the cutoff modes in the form of contour plots in fig. 7.2.19 for modes E and in
fig. 7.2.20 for modes H. We may see, for instance, that the error for mode H; ranges from
—8% to 0% in the case of the standard method and from —0.4% to 0.6% after the use of
the modified algorithm. The reduction of the error is significant, but it is still at a larger
level than the numerical dispersion. In the same manner, we present the results for the
static case in figs. 7.2.19 and 7.2.20. All these plots show remarkable improvement in the
error level for every position of the structure.
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Table 7.2.6: Cutoff frequencies [GHz] of E modes of the inhomogeneous single-wedge line

calculated with the standard finite difference algorithm.

20x18 | 40x36 | 80x72 | 160x144 | 320x288 Ext.

Eq | 38.15 | 37.88 | 37.76 37.70 37.67 | 37.6387
1.36% | 0.64% | 0.31% | 0.16% 0.08%

Eo | 53.89 | 53.76 | 53.68 53.64 53.61 53.5936
0.54% | 0.30% | 0.16% | 0.08% 0.04%

Eg | 57.44 | 57.19 | 57.11 27.08 27.07 27.0614
0.66% | 0.22% | 0.08% | 0.04% 0.02%

Ey | 62.67 | 62.56 | 62.53 62.52 62.51 62.5082
0.25% | 0.09% | 0.04% | 0.02% 0.01%

Table 7.2.7: Cutoff frequencies [GHz] of H modes of the inhomogeneous single-wedge line

calculated with the standard finite difference algorithm.

20x18 | 40x36 | 80x72 | 160x144 | 320x288 Ext.
H; 13.95 | 14.18 | 14.29 14.35 14.38 14.4160
-3.23% | -1.66% | -0.85% | -0.43% -0.22%
Ho 23.41 23.51 | 23.54 23.56 23.56 23.5647
-0.66% | -0.24% | -0.09% | -0.04% -0.02%
Hg 32.20 32.21 | 32.21 32.21 32.21 32.2106
-0.03% | -0.00% | 0.00% | 0.00% 0.00%
Hy 35.50 35.65 | 35.71 35.74 35.75 35.7648
-0.75% | -0.33% | -0.15% | -0.07% -0.03%
Hy 47.96 48.16 | 48.24 48.27 48.28 48.2972
-0.71% | -0.28% | -0.12% | -0.06% -0.03%
Hg 50.02 50.01 | 50.00 50.00 50.00 50.0000
0.05% | 0.02% | 0.00% | 0.00% 0.00%
H~ 52.29 52.51 | 52.59 52.63 52.64 52.6600
-0.69% | -0.29% | -0.13% | -0.06% -0.03%
Hg 57.31 57.30 | 57.31 27.31 57.32 27.3226
-0.02% | -0.04% | -0.03% | -0.01% -0.01%
Hg 59.70 99.66 | 59.65 29.64 59.64 29.6454
0.09% | 0.02% | 0.00% | -0.00% -0.00%
Hyp | 61.74 62.00 | 62.07 62.10 62.10 62.1098
-0.59% | -0.18% | -0.06% | -0.02% -0.01%
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Table 7.2.8: Cutoff frequencies [GHz] of E modes of the inhomogeneous single-wedge line
calculated with the finite difference algorithm with modeling of the wedge.

Ref. 20x18 | 40x36 | 80x72 | 160x144

Eq | 37.6387 | 37.68 | 37.64 | 37.64 37.64
0.12% | 0.02% | -0.00% | -0.00%

E9 | 53.5936 | 53.58 | 53.59 | 53.59 53.99
-0.03% | -0.01% | -0.01% | -0.00%

Eg | 57.0614 | 57.27 | 57.11 | 57.07 57.06
0.37% | 0.09% | 0.02% | 0.00%

Ey | 62.5082 | 62.60 | 62.53 | 62.51 62.51
0.15% | 0.04% | 0.01% | 0.00%

Table 7.2.9: Cutoff frequencies [GHz] of H modes of the inhomogeneous single-wedge line

calculated with the finite difference algorithm with modeling of the wedge.

Ref. 20x18 | 40x36 | 80x72 | 160x144

Hy | 14.4160 | 14.42 | 14.42 | 14.42 14.42
0.05% | 0.04% | 0.02% | 0.01%

Ho 23.5647 | 23.55 | 23.56 | 23.56 23.56
-0.05% | -0.01% | -0.00% | -0.00%

Hg 32.2106 | 32.24 | 3222 | 32.21 32.21
0.09% | 0.02% | 0.01% | 0.00%

Hy | 35.7648 | 35.75 | 35.76 | 35.76 35.76
-0.05% | -0.01% | -0.00% | -0.00%

Hy 48.2972 | 48.15 | 48.26 | 48.29 48.30
-0.30% | -0.07% | -0.01% | -0.00%

Hg 50.0000 | 50.02 | 50.01 | 50.00 50.00
0.05% | 0.02% | 0.00% | 0.00%

H- | 52.6600 | 52.52 | 52.63 | 52.65 52.66
-0.27% | -0.06% | -0.01% | -0.00%

Hg 07.3226 | 57.55 | 57.38 | 57.34 97.33
0.39% | 0.10% | 0.03% | 0.01%

Hg 59.6454 | 59.84 | 59.70 | 59.66 99.65
0.33% | 0.09% | 0.02% | 0.01%

Hqip | 62.1098 | 61.81 | 62.04 | 62.09 62.11
-0.49% | -0.12% | -0.03% | -0.01%
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Table 7.2.10: Static attenuation constants [Np/m/] of E modes of the inhomogeneous single-

wedge line calculated with the standard finite difference algorithm.

20x18 | 40x36 | 80x72 | 160x144 | 320x 288 Ext.

Eq | 1162.2 | 1150.9 | 1146.6 | 1144.8 1144.0 | 1143.346
1.65% | 0.66% | 0.28% | 0.13% 0.06%

Eo | 1468.7 | 1464.5 | 1462.9 | 1462.1 1461.7 1461.333
0.51% | 0.22% | 0.11% | 0.06% 0.03%

Eg | 1670.3 | 1663.4 | 1660.7 | 1659.5 1659.0 1658.470
0.71% | 0.30% | 0.13% | 0.06% 0.03%

Ey | 2081.3 | 2068.5 | 2061.7 | 2058.2 2056.5 2054.764
1.29% | 0.67% | 0.34% | 0.17% 0.08%

Table 7.2.11: Static attenuation constants [Np/m] of H modes of the inhomogeneous

single-wedge line calculated with the standard finite difference algorithm.

20x18 | 40x36 | 80x72 | 160x144 | 320x288 Ext.

Hy | 492.0 | 4983 | 501.5 503.1 503.9 504.688
-2.52% | -1.26% | -0.63% | -0.31% -0.16%

Ho 628.2 628.3 | 628.3 628.3 628.3 628.319
-0.03% | -0.01% | -0.00% | -0.00% -0.00%

Hg 841.9 842.2 | 8424 842.5 842.6 842.632
-0.09% | -0.05% | -0.02% | -0.01% -0.01%

Hy 1157.8 | 1159.6 | 1160.5 | 1160.9 1161.1 | 1161.311
-0.30% | -0.15% | -0.07% | -0.04% -0.02%

Hg 1255.3 | 1256.3 | 1256.6 | 1256.6 1256.6 | 1256.637
-0.10% | -0.03% | -0.01% | -0.00% -0.00%

Hg 1410.3 | 1412.2 | 1413.2 | 1413.7 1413.9 | 1414.159
-0.28% | -0.14% | -0.07% | -0.03% -0.02%

H~ 1469.9 | 1470.1 | 1470.1 | 1470.1 1470.1 | 1470.152
-0.02% | -0.00% | -0.00% | -0.00% -0.00%

Hg 1790.5 | 17924 | 1793.6 | 1794.4 1794.7 | 1795.149
-0.26% | -0.15% | -0.08% | -0.04% -0.02%

Hg 1880.4 | 1883.9 | 1884.7 | 1884.9 1884.9 | 1884.956
-0.24% | -0.06% | -0.01% | -0.00% -0.00%

Hyip | 1983.2 | 1985.7 | 1986.6 | 1987.0 1987.1 | 1987.295
-0.21% | -0.08% | -0.04% | -0.02% -0.01%
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Table 7.2.12: Static attenuation constants [Np/m/] of E modes of the inhomogeneous single-
wedge line calculated with the finite difference algorithm with modeling of the wedge.

Ref. 20x18 | 40x36 | 80x72 | 160x144
Eq | 1143.346 | 1144.0 | 1143.4 | 1143.4 | 1143.3
0.05% | 0.01% | 0.00% 0.00%
Eo | 1461.333 | 1462.2 | 1461.5 | 1461.3 | 1461.3
0.06% | 0.01% | -0.00% | -0.00%
Eg | 1658.470 | 1660.9 | 1659.0 | 1658.6 | 1658.5
0.15% | 0.03% | 0.01% 0.00%
Eyq | 2054.764 | 2056.1 | 2054.8 | 2054.7 | 2054.7
0.06% | 0.00% | -0.00% | -0.00%

Table 7.2.13: Static attenuation constants [Np/m] of H modes of the inhomogeneous
single-wedge line calculated with the finite difference algorithm with modeling of the wedge.

Ref. 20x18 | 40x36 | 80x72 | 160x144
Hy | 504.688 | 504.9 | 504.8 | 504.8 504.7
0.04% | 0.03% | 0.02% | 0.01%
Ho 628.319 | 628.2 | 628.3 | 628.3 628.3
-0.03% | -0.01% | -0.00% | -0.00%
Hg 842.632 | 842.7 | 842.7 | 842.6 842.6
0.01% | 0.00% | 0.00% | 0.00%
Hy | 1161.311 | 1161.2 | 1161.3 | 1161.3 | 1161.3
-0.01% | 0.00% | 0.00% | 0.00%
Hy | 1256.637 | 1255.3 | 1256.3 | 1256.6 | 1256.6
-0.10% | -0.03% | -0.01% | -0.00%
Hg | 1414.159 | 1414.0 | 1414.2 | 1414.2 | 1414.2
-0.01% | 0.00% | 0.00% | 0.00%
H- | 1470.152 | 1470.0 | 1470.1 | 1470.1 | 1470.1
-0.01% | -0.00% | -0.00% | -0.00%
Hg | 1795.149 | 1797.3 | 1795.8 | 1795.3 | 1795.2
0.12% | 0.03% | 0.01% | 0.00%
Hg | 1884.956 | 1880.4 | 1883.9 | 1884.7 | 1884.9
-0.24% | -0.06% | -0.01% | -0.00%
Hyg | 1987.295 | 1985.7 | 1987.0 | 1987.2 | 1987.3
-0.08% | -0.02% | -0.00% | -0.00%
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Figure 7.2.19: Contours of relative error [%] of the cutoff frequencies of E modes versus
normalized location of the structure with respect to Yee’s cell for the finite difference

algorithm without (a) and with (b) correction.
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Figure 7.2.20: Contours of relative error [%] of the cutoff frequencies of H modes versus
normalized location of the structure with respect to Yee’s cell for the finite difference

algorithm without (a) and with (b) correction.
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Figure 7.2.21: Contours of relative error [%] of the static attenuation constant of E modes
versus normalized location of the structure with respect to Yee’s cell for the finite difference
algorithm without (a) and with (b) correction.
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algorithm without (a) and with (b) correction.
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Figure 7.2.23: Rotation of the inhomogeneous single-wedge line in Yee’s mesh. 0°
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Rotation In the next step, the waveguide is rotated versus the edge (see fig. 7.2.23).
Two tests were performed, for calculating cutoff frequencies (fig. 7.2.24) and static atten-
uation constants (fig. 7.2.25). The staircase approximation with results at the top charts
does not model metal walls, dielectric boundary, nor the edge. The errors are in this case
large like in the previous tests. And again, we observe significant reduction of these errors
for the modified algorithm.

Stability of the explicit update scheme Like in sec. 7.2.4, the tests with the inhomo-
geneous line, for various locations with respect to the grid, showed that the new algorithm
has no influence on the positiveness and the spectral radius of the operator. This means
that eq. (3.8.27) may still be used as a stablity condition for the explicit update schemes.
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Figure 7.2.25: Relative error [%] of the static attenuation constants of E (a) and H modes
(b) versus angle between the inhomogeneous single-wedge line and Yee’s grid: staircase
approzimation (top) and the new algorithm (bottom).
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7.2.6 Circular waveguide
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Figure 7.2.26: Two positions of the circular waveguide in Yee’s grid: node e, in the center
and node h, in the center.

In order to further test the algorithm for modeling of metal walls, we numerically
analyze a circular waveguide of radius 3mm filled with the vacuum. We use the finite
difference method with space step size Ah = 0.4mm. Fig. 7.2.26 shows two locations of
the waveguide with respect to the grid: with nodes e, (at the left side of the figure) and
h. (at the right) in the center. Tab. 7.2.14 presents the results of the tests. All the tests
were performed for the two positions of the waveguide. Cutoff frequencies were calculated
for metal walls modeled with the staircase approximation and with the new algorithm.
The table shows relative errors of the cutoff frequencies with respect to the analytical
solution.

The first index in the mode name denotes the order of Bessel function J (modes TM)
or its derivative (modes TE). The second index denotes zeros of these functions. Note,
that a pair of modes with the same indices exist for function orders greater than zero.
These modes correspond to two sinusoidal variations in angular direction shifted in phase
by 90° with respect to each other. The results will be the same if the first index of the
modes is odd. This corresponds to the same odd number of periods of the sinusoidal
function in angular direction in the variation of the field. In this case, Yee’s grid reveals
a sort of symmetry, where directions x and y in the Cartesian coordinates have the same
properties. This leads to the same result in the calculated cutoff frequency for odd modes.
This property takes place for the staircase approximation and for the new algorithm for
both locations of the waveguide with respect to the structure. However, an arbitrary
location may spoil the symmetry and the results will differ. Even modes do not have such
property.

One may note, that the error is very large for the staircase approximation. It may even
reach about 9% in the case of mode TE,; for the location with node h, in the center. The
new algorithm strongly reduces this error pushing its magnitude down below 1% for the
whole tested frequency range 0-110GHz. In the case of mode TE,; the error is reduced
to about -0.3%.
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Table 7.2.14: Cutoff frequencies of the circular waveguide calculated by FD-FD and their
relative errors with respect to the analytical solution. Electric walls modeled with staircase
approzimation and with the new algorithm. Results for two positions of the waveguide
with respect to the grid.

e, in the center h, in the center
Ref. Staircase New alg. Staircase New alg.
f f Err f Err f Err f Err

[GHZ] GHz] | [%] | [GHz] | [%] || [GHz] | [%] | [GHz] | [%]

TMy, | 38.2740 || 39.89 | 4.23 | 38.23 | -0.11 39.77 | 3.90 | 38.29 | 0.03
TMy; | 60.9835 | 63.54 | 4.19 | 61.03 | 0.08 | 63.32 | 3.83 | 61.10 | 0.18
TMy; | 60.9835 | 63.54 | 4.19 | 61.03 | 0.08 | 63.32 | 3.83 | 61.10 | 0.18
TMy, | 81.7360 | 85.03 | 4.03 | 81.77 | 0.05| &83.52 | 2.19 | 81.69 | -0.05
TMy, | 81.7360 || 85.19 | 4.23 | 82.15 | 0.50 || 86.06 | 5.30 | 82.37 | 0.77
TMgy | 87.8548 91.43 | 4.07 | 88.19 | 0.39 91.14 | 3.74 | 88.21 | 0.41
TMsj; | 101.5434 || 105.61 | 4.01 | 102.00 | 0.45 || 104.86 | 3.27 | 102.04 | 0.49
TMsj; | 101.5434 || 105.61 | 4.01 | 102.00 | 0.45 || 104.86 | 3.27 | 102.04 | 0.49
TMy, | 111.6565 || 116.03 | 3.91 | 112.38 | 0.65 || 116.02 | 3.91 | 112.39 | 0.65
TMq, | 111.6565 || 116.03 | 3.91 | 112.38 | 0.65 || 116.02 | 3.91 | 112.39 | 0.65

TE;; | 29.3033 || 29.31| 0.01| 29.34 | 0.13 | 28.77|-1.82 | 29.31 | 0.04
TEy; | 29.3033 | 29.31| 0.01| 29.34 | 0.14 | 28.77 | -1.82 | 29.31 | 0.04
TEy | 48.6097 || 46.67 | -3.99 | 48.71 | 0.21 | 4591 |-5.55 | 48.62 | 0.02
TEy | 48.6097 || 49.52 | 1.87| 48.74| 0.26 || 48.16 | -0.92 | 48.66 | 0.10
TEe | 60.9835 | 61.44| 0.75| 61.10 | 0.19 | 60.84 | -0.24 | 61.01 | 0.05
TEs; | 66.8640 || 65.11 | -2.62 | 67.06 | 0.29 | 63.64 | -4.82 | 66.89 | 0.04
TEs; | 66.8640 || 65.11 | -2.62 | 67.06 | 0.30 || 63.64 | -4.82 | 66.89 | 0.04
TE4 | 84.6315 | 77.19 | -8.80 | 84.47 | -0.19 || 77.09 | -8.91 | 84.40 | -0.27
TEy | 84.6315 | 8791 | 3.87| 85.35| 085 | 81.99 |-3.12 | 84.82 | 0.22
TE;o | 84.8525 | 84.91| 0.07| 85.11 | 0.30 | 84.52|-0.39 | 84.91 | 0.07
TE;o | 84.8525 | 84.91 | 0.07| 85.11 | 0.30 | 84.52|-0.39 | 84.91 | 0.07
TEs; | 102.1077 || 99.34 | -2.71 | 102.42 | 0.30 || 94.36 | -7.59 | 101.95 | -0.16
TEs; | 102.1077 || 99.34 | -2.71 | 102.42 | 0.31 || 94.36 | -7.59 | 101.95 | -0.16
TEy | 106.7314 || 102.63 | -3.84 | 107.02 | 0.27 || 103.74 | -2.81 | 106.34 | -0.36
TEy | 106.7314 || 105.90 | -0.78 | 107.13 | 0.37 || 106.57 | -0.15 | 107.19 | 0.43
TEgy | 111.6565 || 111.92 | 0.24 | 112.14 | 0.43 || 111.22 | -0.39 | 111.76 | 0.10
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7.3 Eigenfunction expansion techniques

In this section, we present the numerical results of the tests carried out to verify the
eigenfunction expansion techniques developed in chapter 6. We test the accuracy of the
EE algorithms by analyzing the error functions defined in sec. 7.3.1. In sec. 7.3.2, we
present the results for an image line analyzed by EE formulas based on the expansion
functions calculated using the finite difference method.

7.3.1 Error functions

In the following equations, subscripts .. denote quantities calculated using EE methods,
and subscripts ,f denote reference quantities calculated using standard methods. We test
the accuracy of the new EE algorithms by analyzing the following error functions related
to the dispersion characteristics:

e the relative error of propagation constant:

erry = Dz ~ Dt 10500 7.3.1
O Bt
zref
e the relative error of frequency:
erry = % -100% (7.3.2)
ref

We also need to define the error functions related to the field distribution. Since the
eigenvectors are accurate up to the multiplicative constant we use the following definition:

e the relative transverse electric energy of error:

eE ee — Ere : eﬁ ee 5 re *d
errg = JsaeEy tqf) @Dy tref)"ds (7.3.3)
ffS Etref Dtrefds

e the relative transverse magnetic energy of error:

mﬁee_ﬁre : méee_ére *d
erry = Hsom Hy tef) - (O By tet)"ds (7.3.4)

ffS ﬁtref ’ ézkrefds

where a., «,, are parameters, which minimize the errors. In app. C we calculate o, ()
and derive the final form of functions errg and err,;:

Eyee - Di pds|?

ffS Etee : Dteeds ’ ffS Etref l_j;tkrefds
— . 2
ety = 1— _ | ff:?’ Htee Btrefd8| (736)
ffs Htee : Bz:,keeds : ffs Htref Btrefds

Further on, we express both errors in dB:

errggg = 10log(errg)

ertyap = 10log(erryy) (7.3.8)
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Figure 7.3.1: Test model of an image guide. All dimensions are in [mm], €; = 9e,

M1 = Ho-

7.3.2 Numerical analysis of an image line

In order to test the new EE algorithms, we implemented these techniques in the form of a
computer program and applied it to the image line shown in fig. 7.3.1. The basis for the
EE method and the references were calculated using the finite-difference frequency-domain
method with a square 40 x 20 grid. The metal walls of the structure coincide with the
tangential electric field, and hence they do not introduce additional error into the results.
The dispersion characteristics in the standard and inverse forms are shown in fig. 7.3.2.
The standard characteristics give the propagation constants as functions of frequency and

25
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Figure 7.3.2: Standard 5, = f(f) and inverse f = f(B,) dispersion characteristics of the
tested image line.

are results of solving of eigenproblems arising from the discrete form of formulations from
tab. 3.5.9 with parameter w? and eigenvalues (32. The inverse characteristics are frequen-
cies versus propagation constants and correspond to the formulations with parameter (3
and eigenvalues w?. One may observe complex modes which are denoted with the dashed
line and appear in the frequency ranges 2.5...7.5GHz and 12...15GHz. One should also
note the difference in the complex modes at the standard and the inverse characteristics.
The standard characteristics are plotted for real frequencies, and the inverse characteris-
tics are defined for strictly real or strictly imaginary propagation constant (i.e. for real 3?).
The imaginary part of the propagation constant denotes attenuation in the longitudinal
direction and the imaginary part of the frequency denotes attenuation in time.
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At first, we present the results of the tests corresponding to the EE algorithms tak-
ing advantage of the orthogonality between the fields. Let us start from the algorithm
defined by eqs. (6.3.13) and (6.3.14). This algorithm requires as a basis a set of modes
corresponding to a fixed propagation constant 3.,,. We chose a set of 20 lowest order
cutoff modes (3,0 = 0). The algorithm provides the dispersion characteristics in the form
B.(f). Relating these characteristics to the reference data, we get relative errors errg
in the propagation constants as functions of the frequency. Fig. 7.3.3 presents the real
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Figure 7.3.3: Real and imaginary parts of relative error errg[%)] in the propagation constant
versus frequency [GHz] for the EE algorithm with 3.9 = 0 and 20 modes used in the field
eTPansion.
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Figure 7.3.4: Real and imaginary parts of relative error err¢[%)| in the frequency versus
propagation constant [rad/m] for the EE algorithm with (5,0 = 0 and 20 modes used in the
field expansion.

and the imaginary parts of this error in percents. The errors become zero at all points
which form the basis of EE algorithm. For instance, error for the first mode becomes
zero near 7.5GHz, which is its cutoff frequency. Imaginary part of the relative errors
has nonzero value only for the parts of the characteristics corresponding to the complex
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modes. Three out of eight calculated modes have the relative error lower than 1.5% in
the whole investigated frequency range.

Fig. 7.3.4 presents analogous results for the algorithm with the same basis but derived
from egs. (6.3.15), (6.3.16). This algorithm gives the dispersion characteristics in the form
f(B.). The figure shows the real and the imaginary parts of the relative error in frequency
as a function of propagation constant. One may note that the error is zero for 3, = 0, i.e.
at the basis, and grows up when the propagation constant goes away from zero. One may
also observe peaks of the real and imaginary parts of error at the points corresponding
to zero frequency. These peaks are associated with the relative nature of the error (the
reference values are zero at these points) and they always appear when zero values of the
functions are shifted with respect to the reference. They exist even if the shift is very
small. Analogous peaks may be seen on the plots presented further on. We may read
from the figure, that the maximum error for all calculated modes in the range of interest
is about 4%.

errg|dB| erry[dB]

~100 s w \ | -100
0 0

-100

I I I | I I I I I I I I I I I I I I I I I I
-600 -400 -200 0 200 400 600 800 1000 1200 1400 -600 -400 -200 0 200 400 600 800 1000 1200 1400

Figure 7.3.5: Energy errors in the electric (errg) and magnetic (erry[dB]) fields [dB]
versus frequency [GHz] and propagation constant [rad/m] for the EE algorithm with 3,0 =
0 and 20 modes used in the field expansion.

In fig. 7.3.5 we present energy errors for electric and magnetic fields for both algorithms
presented above. The errors tend to zero at the points forming the basis. We can note
that the error levels become smaller than -20dB in the regions where relative error of
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eigenvalues is less than 1.5% (compare with figs. 7.3.3 and 7.3.4).
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Figure 7.3.6: Real and imaginary parts of relative error errf[%)| in the frequency versus

propagation constant [rad/m] for the EE algorithm with fo = 10GHz and 20 modes used
in the field expansion.
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Figure 7.3.7: Real and imaginary parts of relative error errg[%)] in the propagation constant

versus frequency [GHz] for the EE algorithm with fo = 10GHz and 20 modes used in the
field expansion.

In the same manner, we present the results for the EE algorithms arising from
egs. (6.3.24) and (6.3.25). In this case, the basis must be formed out from the modes
corresponding to a fixed frequency fy. In our test, we chose frequency f, = 10GHz and 21
lowest order modes. The results in the form of the relative error in the frequency versus
the propagation constant are shown in fig. 7.3.6. Comparing this figure with fig. 7.3.4,
we see, that levels of errors in our test are in general much greater compared to the
results presented earlier except for the regions where propagation constants correspond
to frequency fy = 10GHz and minimal errors are observed.

The algorithm with the same basis but defined by eigenproblems (6.3.26) and (6.3.27)
produces plots of errors in the propagation constants versus the frequency as shown in
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fig. 7.3.7. As before, we may compare these results to the plots presented earlier in
fig. 7.3.3. Comparing fig. 7.3.7 with fig. 7.3.3, we see, that now the levels of errors are
much greater than in the previous case for frequencies above 15GHz. Naturally, minimum
errors are observed for f = 10GHz. For frequencies below f = 10GHz errors are slightly
lower than in the previous algorithm.

In general, the basis for EE algorithm may be formed from fields calculated for an
arbitrary set of points from the dispersion characteristics. In this case, we do not take
advantage of the orthogonality relations between the fields. The algorithm is defined
by egs. (6.3.9) and (6.3.12). Further on, we test the behavior of the fundamental mode
calculated using the EE technique. The basis is constructed from fields of the lowest
order mode calculated by means of the finite-difference frequency-domain method for a
few (f, 3,) points. In our test, we chose two point basis consisting of modes computed at
f=0and 8, = 0. The results are shown in fig. 7.3.8. We can see that even though only
two points in the field expansion give dispersion characteristic error lower than 1.5% in
the range of interest. Energy error is lower than -20dB for frequencies below 10GHz.
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(%] (b) and energy error errg[dB] in the electric field (solid line) and erry[dB] in the
magnetic field (dashed line) (¢) for EE algorithms with basis consisting of 2 eigenfunctions
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Chapter 8

Conclusions

In this thesis, we presented a new approach to the finite-difference schemes and developed
a series of new techniques speeding up the calculations and achieving higher accuracy of
computations without increasing the numerical cost. The work may be summarized as
follows:

e The finite-difference schemes in the domains of time and frequency are equivalent
if the analyzed structure is lossless. It was shown, that the solution of one of these
methods may be simply calculated from the other.

e The numerical dispersion error, which is strictly associated with the finite-difference
schemes, may be reduced via centering which is equivalent to multiplication of the
calculated frequency or propagation constant by a simple correction factor. This
increases the accuracy of the computations without increasing the numerical cost.
The correction factor depends on a number of variables and was derived for different
finite-difference algorithms.

e Electromagnetic problems may be expressed in terms of a few basic operators.
Discretization of these operators instead of the whole equations gives a common
approach for every formulation. Discretized basic operators form basic matrices.
They have a very simple form in the homogeneous parts of the domain. Using the
concept of the basic operators, we classified a series of 2D and 3D electromagnetic
problems. Written for a discrete space, they form matrix equations, which define
various finite-difference algorithms.

e Modeling of metal walls, boundaries between dielectrics or conductive wedges may
be performed via simple modification of the basic matrices corresponding to media
properties. It was shown, that while sometimes local anisotropy is produced, the
algorithms do not change the spectral radius of the global operator and the stabil-
ity condition of the explicit-update schemes. Results of the numerical tests showed,
that the new algorithms significantly improve the accuracy of the finite-difference
methods.

e Significant reduction of the computation time may be achieved for some struc-
tures (eg. structures containing sections of waveguides), when some parts of the
domain are analyzed using the method of moments. The field in these subdomains
is expanded into a series of functions. These functions are a basis for the method of
moments which is combined with the finite-difference algorithm, used in the other
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subdomains, via a simple interface. Both methods form a new hybrid procedure,
which may speed up the calculations for a large class of structures.

If a waveguide has to be analyzed for many frequencies or propagation constants, the
calculation time may be reduced by using the eigenfunction expansion technique.
In this method, the standard, time-consuming methods need to be used only once
to construct a basis of fields. This basis is then used by much faster method to get
results for the entire range of parameters.



Appendix A

Formulation of eigenproblems

As discussed in sec. 3.5.3, a whole range of 2D eigenproblems may be derived from
Maxwell’s equations. In this appendix, we present these derivations using the operator
formalism introduced in sec. 3.5. We also derive the transposed problems using properties
of the basic operators derived in sec. 3.5.1.

A.1 General operator investigations
Let us consider a general eigenproblem of the form:
Lu;, = \,Buy, (A.1.1)
It may be converted to the standard eigenproblem by inverting operator B:
B 'Lu, = Moy (A.1.2)
The transposed eigenproblem have the following form:
(B™'L) vp, = M ups (A.1.3)

which is equivalent to:
LB "o, = A\jvps (A.1.4)

Additional subscript , in eigenvectors v, indicates, that the vector indices are associated
with conjugate spectrum of operator L. Eigenvectors vy, are defined as follows:

where wy, is the eigenvector of the following general eigenproblem:

Uk« 1S an eigenvector of the transposed eigenproblem (A.1.4) or so called a left eigenvector
of (A.1.1).

A.2 Formulations for general anisotropic waveguides

In this section, we develop eigenproblems for general 2D case. We base the derivation on
Maxwell’s equations written in the forms (3.5.29), (3.5.30) or (3.5.31), (3.5.32).
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A.2.1 6 field component w and 3, formulations

Combining (3.5.29) and (3.5.30) into one matrix equation, we get:

—Jm* B le —ZeGie  jn'wMy  jnfwm Mg, mey
_—Dthe . 0 Jn -mezt Jn*wMy, ex | _ 0 (A2.1)
JnwmEgy  jnwk, JmB. Ly 2 Gim nhy
gnwm By jnwE,, DieZ,n 0 mnh,

It is convenient to decompose the operator in eq. (A.2.1) into three parts:
L =1Lo+ (jn'w)L, + (jm*6.)Lg (A.2.2)

where the partial operators are defined as follows:

0 —ZcGte 0 0
| -DgmZe 0 0 0
Lo = 0 0 0 Z. G (A.2.3)
0 0 DieZim 0
0 0 Mtt m*Mtz
o 0 0 mMg M.,
Lw - nQEtt nsztZ 0 0 (A24>
n’m*E,;  n’E,, 0 0
—Ze 0 0 0
0 0 0 0
0 0 0 0

Eq. (A.2.1) may be now written in the form:
[Lo + (jn*w)L, + (jm*B.) Ll u =0 (A.2.6)
According to (A.2.1) vectors u being the solutions of (A.2.6) for w = wy, B, = [.x have

the form:
meg

o €2k

mnh,y

Transposed eigenproblem The transposed equation is given by:
[Lo™ + (jn"w) L™ + (jm*8.) Ls" | w. = 0 (A.2.8)

with the following form of the transposed partial operators:

0 —Z0nGim 0 0
—D:.Z 0 0 0
H teddm
Lo = . 0 0 7.Co (A.2.9)

0 0 DimZe 0
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0 0 antt nsztz
H 0 0 n’m*E,. n’E,,
L.,” = My m*M,, 0 0 (A.2.10)
mM,y My, 0 0
m?*Zy, 0 0 0
0 0 0 O
H 2
Ls" =m 0 0 —Z. 0 (A.2.11)
0 0 0 O
Comparing (A.2.8) with (A.2.1) we find vector wy.:
n*htk*
_ mn*hzk*
Wiy = —_— (A.2.12)
€2kx
where fields higs, Poks, €tkx, €2kx cOrrespond to w = wj and 3, = (.

Left eigenvectors For 3., being the eigenvalue (w = const), we get the expression for

Vs -
- Zmn* htk*
0
Zem” e
0

H
Ve = —Lg" " Wpy =

For wy, being the eigenvalue (3, = const) vg, has the form:

mdtk*

2 dzk*
nbtk*
mnbzk*

H
Vs = _Lw Wgsx = —N

A.2.2 4 field component w formulation

From, respectively, (3.5.32) and (3.5.31), we get:

jnwmdt = _jmﬁzZmNttnbt - jmﬁzzmm*Ntzmnbz
- ZmGtmmNztnbt - ZmGtmszmnbz
—in*wnb; = —im*B.LFymd; — jm* 3. ZemFy,d,

- Zthem*thmdt - Ztherzdz

From (3.5.5), (3.5.6), we calculate the longitudinal field components:

1
d, = Diomd
gmp, e

mnb, = - Dimnb;
Jm*p3.

(A.2.13)

(A.2.14)

(A.2.15)

(A.2.16)

(A.2.17)

(A.2.18)
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Substituting (A.2.17) and (A.2.18) into (A.2.15) and (A.2.16), we get:

(jn*w)md,

(jn*w)nb,

—(jm* B.)m*n*Zp Neenb, — m*n*Zyym N, Demnby

1270 GemmN by — — 1*Z GimNyzDemnb,  (A.2.19)
Jm* 5,

(jm*ﬁz)ZeFttmdt + mzzemthDtemdt
1

Z.Gem* Fpymd, + - 5 m*ZeGoFzzDiyemd; (A.2.20)

Combination of both equations into one matrix-operator equation results in the following

eigenproblem:

0

Lya1 + Lba2 + Lbas + Lbaa

Lab1 + Lab2 + Labs + Laba ] [ md,

0

nbt

where the sub-operators are given by the equations:

Labi
Labz =

Ldb3 -

Laba
Loar =

Lbd2 =
Lbd3 -

Lbaa =

—m*n*Z,m* Nz Dim
12 Zn G N
1
Jm* [,
—(jm* B.)m*n*Zym Ny
m*ZemF,Die

Ze Gtem* th

n2 Zm GtmszDtm

. m2 Ztherthe
Jm*p;
(jm*ﬁz)ZeFtt

Transposed eigenproblem The eigenproblem transposed to (A.2.21) may be written
with the following operator:

LH

0

| .. Y Y Y Lifss + Life + Lijas + L
Lap1 + Labz + Ligbs + Lidba 0

with the sub-operators given by the equations:

H
Ldbl
H
Ldb2
H
Ldb3

H
Ldb4

_m2 TL2 GtmmNzt L= _m2 ZcLab2Ze

_nzm*NtthmZe = _mQZeLdbl Ze

1
jmp;

n2 GtmszDtm Ze = _m2 ZeLdb3* Ze

_(jmﬁ,:)anQNttze - _mQZeLdb4*Ze
m2Geem FuuZm = —m*ZmLba2Zm

mthDteZm = _m2Zmed1 Zm

1

—m2 GtertheZm

jmp;

(jm2ﬁz)Ftth - _m2Zmed4* Zm

= _mzszbd&k Zm

(A.2.30)
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From comparison of eq. (A.2.30) with (A.2.21) it follows, that eigenvectors of the trans-
posed eigenproblem may be written in the form:

2, biges
o diz* (A.2.39)
A.2.3 4 field component 3, formulation
From (3.5.30) and (3.5.29), we get:
—(jm*B.)Leme; — ZeGyoe, + (jn*w)Mihy + (jn'w)m* Myzmnh, 0(A.2.40)
—DimZeme; + (jn*w)mMyenhy + (jn*w)Mgmnh, = 0(A.2.41)
—(jmpB.)Zmhs — L Ggmmnh, — (jnw)Egme; — (jnw)mEge, = 0(A.2.42)
—DieZmnhy — (jnw)m* Ezne, — (jnw)Egze. = 0(A.2.43)
From (A.2.41) and (A.2.43), we calculate the longitudinal field components:
1
mnh, = ——M,_'DimZeme; — M_mM,nh, (A.2.44)
JnFw
1
e, = ——E_ 'DZmnh; — E_'m*E sme, (A.2.45)
Jnw

Inserting (A.2.44), (A.2.45) into (A.2.40), (A.2.42), we get:

1
0 = —(jm*ﬁz)zemet + ,—ZtheEgleteZmnht
jnw
+ ZtheEz_zlm*Eztmet + (jn*w)Mggnhy
+ m*M M, DimZeme; — (jn*w)m* M, M, 'mM,inh, (A.2.46)
1
0 = —(jmﬂz)zmnht — ,—ZmGth;lethemet
Jn*w

+  ZnGemM, ' mMyenh, — (jnw)Egme,
+ mEwE,, DieZmnh; + (jnw)mE,E,, m*Egme; (A.2.47)

Applying, respectively, operator —Z,, and —m?Z. to both sides of these equations and
rearranging the terms, we get:

1
(jm*ﬁz)met = jn—theE;ZlDteZmnht — (jn*w)Zthtnht
+  (jn*w)Zmm MM mMnh, + G E, 'm*Eeme;
— me*MtzM;lethemet (A248)
1

(ym*B)hy = —jn*wmQGthz’lethemet + (jnw)m?*ZeEgyme,
—  (jnw)m*ZemE,E, 'm* Eyme; + m*GenmM, ' mM,nh,
— mQZemEtzE;leteZmnht (A249)

Combining (A.2.48) and (A.2.49) into one matrix-operator equation, we get the following
eigenproblem:

Leel + Lee2 Lehl + Leh2 + Leh3 ] [ mey ‘|

=Jjm*f, A.2.50
Lpe1 + Lie2 + Lies Lin1 + Lin2 nhy Jmp [ nhy ] ( )
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with the following sub-operators:

-1, %
Leel - GteEzzm Ezt

Leex = —me*MtzMglethe
Lot = Gy DyeZim
Jnw
Lene = —(jn'w)ZmMy
Lens = (jn'w)Zmm* MM, 'mM,,
Lhet = ———m?GuuMy Dy
Jn*w
Lyez = (jnw)mQZeEtt
Lhes = —(jnw)m*ZemEw,E,, /m* Ey;
Lini = m*GemM, . mMy,
Lhhe = —m*ZemEyE,, DieZm

Transposed eigenproblem The operator in the eigenproblem transposed to

takes up the form:

LH — Lgel + L%Z " Lfel + L§e2 + L§e3
Lon1 + Lohe + Lehs Lini + Lihe

with the sub-operators defined as follows:

LY, = —mEwE_'Di = m*ZyLunaZe
L, = ZmGimM,, mMyZe = m*ZyLipni Ze
L, = — Z.GuwE; Dy = —1’ZoLo.Ze
Jn*w
Lis = —(jnw")MgZe = —n*ZeLen2sZo
LA, = (jnw)m MM, 'mMZe = —n*ZeLens Zm
Lfel = —= ! *mQZmGth;letm = —1"ZmLhe1+Zm
Jnw
L, = (n'w)m*EwZm = —1°ZmLhez+Zm
L, = —(jn'w)m*mEy,E M EyZy = —1°ZmLiesZm
Lifhy = —m’m* MM, Dim = m*ZeLiee2Zm

Lils = m*ZeGieE,, EpZm = m*ZoLee1 Zm

A.2.62
A.2.63

A.2.64

( )
( )
( )
(A.2.65)
(A.2.66)
(A.2.67)
(A.2.68)
(A.2.69)
( )
( )

A.2.70
A2.71

Comparison of the transposed eigenproblem with the previous equations leads to the

following form of the eigenvectors:

Vpw = [ Zmn htk* ]

*
- Zem Ctlx

(A.2.72)
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A.2.4 3 field component w? formulation

Elimination of magnetic or electric fields from Maxwell’s equations leads to the following
eigenproblems’:

FR,.NR. l m(ft = ? m(ft ] (A.2.73)
he | o
NR.FR,, [ mh, | = w | mh, ] (A.2.74)
R,.NR.F l mjt = o? mjt ] (A.2.75)
R.FR,,N b| w2_ by (A.2.76)
erom mb, | o mb, -
where operators Ry,, Re, F, N are defined as follows:
_ i _jmﬁzzm _ZmGtm
R, = "DyZ. 0 (A.2.77)
_ i _jm*ﬁzze _Zthe
R. = | Dz 0 (A.2.78)
_ [ Fie Fo
F = P Fzz] (A.2.79)
_ [ Ni¢ N,
N = N, sz] (A.2.80)

Note, that eigenproblem (A.2.73) is transposed to (A.2.75) and (A.2.74) is transposed to
(A.2.76).

A.2.5 2 field component w? formulation

We may eliminate the transverse magnetic or electric field components from (A.2.21) and
get the following two field component formulations:

—nzLdb—nszddt = det (A281)
Ldedbbt = wat (A282)

where Lgy,, Lpq are defined as follows:

Lab = Lab1 + Lab2 + Labs + Laba (A.2.83)
Lya = Lpai + Lbaz2 + Lbas + Lpaa (A.2.84)

A.3 Formulations for bidirectional waveguides

In this section, we assume that the structure is strictly bidirectional, i.e. operators Ei,,
E,;, and M,, M, vanish. This implies that Fy,, F,¢, and Ny,, N, also vanish and
Fy = B!, Fuo = B!, Ny = M, Ny = ML

ZZ )

!Compare with 3D 3 component formulations in sec. 3.4.2.
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A.3.1 Duality relations
In bidirectional waveguides, Maxwell’s equations (3.5.29) and (3.5.30) take up the follow-

ing form:
[_j_n];iéz _Z%Gtm] [ngt] = jnw [EO“ EO] [m:t] (A.3.1)
[_ingfjgz _ZBGte] [m:j = —jnw [Nétt N?ZZ- mgf]:j (A.3.2)
It is easy to verify, that these equations may be written in the follov;firig form:
[ o] [Zot] g [FEMuTe ] ] (g
[—_ygzéz —ZBGte] [Zmnsj _ ims, [ZeE,E—)tlzm o ] [_Zﬁﬁj A3

It is clearly seen, that two pairs of equations presented above are dual to each other
with the duality relations of the physical quantities pointed out in tab. A.3.1. This
means, that every formulation for bidirectional waveguides with respect to w has its dual
counterpart formulated with respect to 3,. The appropriate equations may be derived
based on tab. A.3.1. Analogous duality relations may be written for general anisotropic
waveguides. However, this case requires taking bianisotropy into account.

Table A.3.1: Duality relations between physical quantities in bidirectional waveguides.

w — B
B — w
e — Z by
(9 — €,
hy — Z.d;
h, — h.
d, — Znhy
d, — —d,
by — —Zeey
b, — —b,
E¢ — —Zo M Z,
Ezz A— _Ezz
M, —> —ZGEJ&1 7
Mzz — _Mzz
m — n
n — m

A.3.2 4 field component w3, and w? formulations

Eigenproblem (A.2.50) in the case of bidirectional structures may be written in the fol-
lowing way:
ey

(w?Ly2 + L) l 1y ] =m'n*wp, l TZZ ] (A.3.5)
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where operators Lz, Lo are defined as follows:

o 0 —nzztht
I e
0 _n2GteEz_leteZm

If w? is treated as a parameter and (m*n*wf,) is an eigenvalue, left eigenvectors vg, = Wi
are the same as in the case of (A.2.61), i.e. are given by eq. (A.2.72). If (m*n*wp,) is a
parameter (w? is an eigenvalue), the left eigenvectors are given by the following equation:

mdt ‘|

nbt

Vs = —szwk* = l (A38)

A.3.3 4 field component w3, and (3? formulations

From the discussion performed in sec. A.3.1 it follows, that eq. (A.3.5) has its dual coun-
terpart. We may write it in the following form:

2 mdt o * % mdt
(BzLg=2 + Lo) l b, ] =m'n*wp, l b, ] (A.3.9)
with operators Lgz, Lo defined in the following way:
0 —n?Z;mMg!
Lg = l 27 B 0 tt ] (A.3.10)
. 0 nzszth;letm

If 3% is a parameter and (m*n*wf,) is an eigenvalue, left eigenvectors vg, = wy, are given
by eq. (A.2.39). If (m*n*wf,) is a parameter (w? is an eigenvalue), the left eigenvectors
have the form:

Vge = —Lfhwy. = [ 7;';2 1 (A.3.12)

A.3.4 2 field component w? formulation
Extracting the term w?d; from wave equation (3.5.4), we get:
wdy = —3.ZaMg ZeEg di + Zin GemM,, DimZEy' d;
+ J0.Ze M Zo G B, d. (A.3.13)
Substituting (3.5.5) into (A.3.13), we obtain an eigenproblem with w? and dy, being

eigenpairs for a fixed value of j3.:
wdy = —[2ZnMy' ZeEy' di + ZmnGemM,, DemZoEy' d;
+ ZmM ' Z G E, ' Dyod; (A.3.14)
An analogous approach may be applied to the magnetic flux density, giving the following
equation:
Wby = —2ZEy ZinMy'b; + ZeGieE,, DieZmmM, by
+ ZoE' ZmGitmM, Db, (A.3.15)
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A.3.5 2 field component 3? formulation

Egs. (A.3.13), (A.3.14) have two dual counterparts:

ﬁget = _wzzthtZeEttet - ZththmM;letheet

+ GiE,, DicEgcey (A.3.16)
5§ht = —wZeEyZmMith; — ZeEttheEz_ZlDtetht

+ Gth;lethttht (A.3.17)

A.3.6 Scalar formulations

In two cases the analysis may be reduced to solving scalar eigenproblems. This may be
done at cutoff and in the static case. The analysis is then split into modes E and H.

E modes at cutoff From (3.5.1), we get:

—D¢eZinhi = jwE, e, (A.3.18)
From (3.5.2), for 3, = 0:
—Ztheez = _jWMttht (A319)
This gives:
R
ht = j—wMttlztheez (A320>

We put (A.3.20) into (A.3.18) and multiply both sides of this equation by —jwE_}. This
gives the following eigenproblem:

E_ ' DeZmM' ZGiee. = we, (A.3.21)
The transposed eigenproblem has the form:
DeZimM,'Z.GoE, ' d. = wd, (A.3.22)

H modes at cutoff In a similar manner we may get the eigenproblem with scalar
eigenfunctions h,:

M_ ' DimZeE' ZmGimh. = w?h, (A.3.23)
and its transpose with the eigenfunctions b,:
DimZoE' Zm GtnM,'b. = w2, (A.3.24)

E static modes From the duality relations given in sec. A.3.1, we get the eigenproblem
dual to (A.3.21):

E;leteEttheez = ﬁzez (A325>
The transposed eigenproblem with eigenfunctions d, may be written as follows:
DicEGioE,, d. = 52d. (A.3.26)

H static modes The same procedure produces the eigenproblem with scalar eigenfunc-
tions h,:

Mz_lethtthth = ﬁ?hz (A327)
and its transpose with the eigenfunctions B,:
DthtthmMz_Zlbz - ﬁ?bz (A328)



Appendix B

Orthogonality relations

One of the most fundamental properties of modes are the orthogonality relations. This
appendix contains derivations of these relations for the problems derived in app. A.

B.1 General operator investigations

It is easy to verify, that vectors defined in sec. A.1 satisfy the following orthogonality
relations:

0 = < Lug,wy>—< uk,LHwbk >

< MeBuyg, wye > — < uy, /\Z‘Ble* >

= (A —N) < ug, By, >

= (M= N) < up, v > (B.1.1)

This means, that if \; # \;, vectors u and v, are orthogonal:
< U,V >=10 (B.1.2)

In many cases in electromagnetics, the eigenproblems may be written in the following
form:
Luk = %Auk + /\kBuk (B13)

where v and A are independent parameters. A set of solutions (v, A) gives the dispersion
characteristics. Let us now consider the transpose eigenproblem:

L% wy, = v A" wy, + A By, (B.1.4)

Applying the inner product (.,w;) to both sides of eq. (B.1.3) and the inner product
(ug,.) to eq. (B.1.4), we get:

<Luk, U}l*> = (’ykAuk, U}l*> + ()\kBuk, wl*) (B15>

<uk, Lle*> = <uk,%*Ale*> + <uk, /\Z‘Ble*> (B.1.6)

Subtracting (B.1.6) from (B.1.5) we get more general orthogonality relations:

(v — m) (A, wi) + (A — Ar) (Bug, wyy) =0 (B.1.7)
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B.2 Electromagnetic field in lossless waveguides

Based on the general investigations from the previous section and different formulations
of electromagnetic eigenproblems derived in app. A, we may now present different orthog-
onality relations for 2D problems. Note, that the relations are independent on the choice
of parameters m, n.

Modes in general anisotropic waveguides General relations (from eigenproblem in
app. A.2.1):

0 = (ﬁzk - ﬁzl) (<etk> thtl*> - <htka Zeetl*>)

+  (wp —wi) ((er, dis) + (hi, b)) (B.2.1)
for 5, = const (eigenproblems in apps. A.2.1, A.2.2, A.2.5):
(we —wr) ({ex, dix) + (hi, b)) =0 (B.2.2)
(Wi — wi) ((di, Zmbiie) — (bik, Zedsrn)) = 0 (B.2.3)
(wi — w}) (duk, Zmbu) = 0 (B.2.4)

for w = const (see app. A.2.1):
(ﬁZk - ﬁZl> (<etk7 thtl*> - <htk7 Zeetl*>> =0 (B25)

Modes in bidirectional waveguides General relations (apps. A.3.2, A.3.3, A.3.4):

0 = (ﬁzkwk - ﬁzlwl) (<€tka thtl*> - <htk7 Zeetl*>>
+ (Wi — w}) (et dun) + (hars bus)) (B.2.6)

0 = (Berwr — Bawr) ((di, Zenbie) — (bee, Zedys))
+ 3;: - @21) ((dik, €a1s) + (bir, hs)) (B.2.7)

0 = (ﬁzk - ﬁ?l) <etk‘a thtl*>

(wi — wi') ik, Zanbuz) (B.2.8)

for 32 = const (apps. A.3.2, A.3.4):
(Barwr — Bawi) ((diks Zimbiw) — (bir, Zedus)) = 0 (B.2.9)
(wi = @) (i, Zmbua) = 0 (B.2.10)

for w? = const (apps. A.3.3, A.3.5):
(Bokwi — Bawi) ((ew, Zmhie) — (P, ZicCys)) = 0 (B.2.11)
(B2 — B2) (s, Znha) = 0 (B.2.12)

for f,w = const (apps. A.3.2, A.3.3):
(wi — w?) ({de, €qs) + (bigs Pyge)) = 0 (B.2.13)

( zzk - 531) ((etk, dus) + (hag; bus)) = 0 (B.2.14)
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Cutoff modes in bidirectional waveguides (from app. A.3.6 and eq. (B.2.2))

(Wi = w}) (ks date) =0 (B.2.15)
(wi = wi) (e, dus) =0 (B.2.16)
(Wi = @) (has batw) = 0 (B.2.17)
(wi = w}) (Puk, bue) = 0 (B.2.18)
Static modes in bidirectional waveguides (app. A.3.6, eq. (B.2.2))
(B2 — %) (ezr ) = 0 (B.2.19)
(B2 — B2) (e, du.) =0 (B.2.20)
(82 = 52) (haky bas) = 0 (B.2.21)
(82 = 52) (hur, bus) = 0 (B.2.22)

B.3 Electromagnetic field in lossless 3D resonators
In the same manner, we derive the orthogonality relations in the case of 3D problems.
(wk — wl) (<6k, dl*> + <hk, bl*>) =0 (B?)l)

(wit — wf) {er, di) = 0 (B.3.2)
(wi = wi) (hay bu) = 0 (B.3.3)
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Appendix C

Field error functions

We derive the error functions related to the field distribution defined by equations (7.3.3)
and (7.3.4) repeated below for completeness.

e the relative transverse electric energy of error:

— ffs(aeﬁtee - Etref) : (aeﬁtee - ﬁtref)*ds

erry = = (C.0.1)
ffS Etref ' D;fkrefds
e the relative transverse magnetic energy of error:
m[__jee_ﬁre . méee_ére *d
erry = Hs(omHy wet) - (O By tet)"ds (C.0.2)

ffS F[tref ’ E?refds

Qe, Oy, are parameters, which minimize the errors. Further, we assume, that the materials
are lossless, which implies, that errg and erry; are real. In order to find a., we need to
find zero of the derivative of errg with respect to .. We decompose the terms in (C.0.1)
into:

tee
= = Qe = = : = =
Il Ewet - Diyopds IJs Bt - Diyords IJs Ewet - Diyopds
By decomposing «. into real (a.,) and imaginary (a.;) parts (i.e., ®e = Qe + Jjve;), We
get:

‘2 ffS Etee ) 5* ds N ffS Etee ) ﬁfrefds —at ffS Etref ) ﬁfeeds

errp = |ae

+1 (C.0.3)

—

ey (o LB Dl R B D)y U B D)
ffS Etref ' D;tkrefds ffS Etref ' D;tkrefds ffS Etref ’ Dzi,krefds
(C.0.4)
Taking the derivatives of eq. (C.0.4) with respect to ., and «.;, we get:
d Eyeo - D1 d R([[g Esee - Diosd
errg = 20, s “tee ZteelS g (HS_, fee  “tref s) (C.0.5)
8aer ffS Etref ' D;tkrefds ffS Etref ’ D;tkrefds
Eree - Diod S(ffs Eree - Difosd
erry = 2aei ffS _}t _‘tee S _'_2‘s(ff5’_‘ t _}tref 8) (CO6>
a@ei ffs Etref M D;‘efds ffs Etref * Dzkrefds
Equating (C.0.5), (C.0.6) to zero, we calculate ae, ae;:
o = %(ffs’ ?tee : _l?:refds) (CO7>
ffS Etee : D:eeds
S _%(ffs Etee - D}y opds) (C.0.8)

ffS Etee : D);tkeeds

185



186 Fast finite difference numerical techniques ...

Finally, by putting (C.0.7) (C.0.8) into (C.0.4), function errg takes up the form:

| /[ Evee - Djyopds|?

errp = 1 — e E— — — (C.0.9)
ffs Etee : D;tkeeds ’ ffS Etref ' D;tkrefds
An analogous approach for function err,; leads to the following equation:
Hyeo - B opds|?
erryy = 1 — | s H trr 1S (C.0.10)

ffs [__jtee : B}eeds ’ ffS ﬁtref ’ E:refds
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