(Ex 1) (2 pts) Calculate the area of region $R = \{(x, y) : e^x \le y \le 3^x, 0 \le x \le 2\}$ using a double integral. Draw a suitable graph.

(Ex 2) (2 pts) Calculate $\iint_D (x-y)^2 dx dy$ if $D = \{(x,y) : 1 \le x^2 + y^2 \le 4, y \ge |x|\}$. Use polar coordinates.

(Ex 3) (1 pt) Draw the surface $z = -\sqrt{4 - x^2 - y^2} + 1$ and describe it in your own words.

(Ex 4) (1+1 pts)

a) Find the mass of a parallelepiped $R = [0,1] \times [0,2] \times [0,\pi]$ with density $\rho(x,y,z) = (x+y)\sin(z)$.

b) Draw the parallelepiped and discuss its density at two different points and along the z-axis.

(Theory 1) (2×1 pt) Consider calculating volume of a solid based on a region D = [a, b] × [c, d] bounded from above by the graph of f(x, y) and from below by the OXY-plane. How would you calculate the volume using a) a double integral, b) a triple integral? Write down appropriate formulas.

(Theory 2) (1+2 pts) a) Give the definition of spherical coordinates, mark all angles and the radius on a diagram.

 $\mathbf{x} =$ $\mathbf{y} =$ $\mathbf{z} =$

b) Consider an upper hemisphere with radius 2 out of which an upper part of a cone was cut out. The cone was slanting at the radius of $\frac{\pi}{4}$ with respect to the OXY-plane. Describe the remaining part of the hemisphere in spherical coordinates and calculate its volume.

(Ex 5) (2 pts) Find y_g and y_p for $y'' = x^2$ if y(0) = 1, y(1) = 2.

Ex 6) (2 pts) Find y_g using separation of variables for $\frac{xy}{x+1} = \frac{dx}{dy}$,

(Ex 7) (2 pts) Find y_g in a linear equation: $(x^2 - 1)y' + 2xy = x$.

(Ex 8) ($2 \times 1 \ pt$) a) Find y_g for y'' + 6y' + 13y = 0

b) "Guess" y_p for $y'' + 6y' + 13y = x^2$ but do not calculate any constants.