Ex 1. (2 pts.) Calculate the area of the region $R = \{(x, y) : e^x \le y \le 3^x, 0 \le x \le 2\}$ using a double integral. Draw the region.

Ex 2. (2 pts) Calculate $\iint_D (x^2 + y^2 + x - y) dx dy$ if $D = \{(x, y) : 1 \le x^2 + y^2 \le 4, x \ge 0, y \ge x\}$. Use polar coordinates.

- **Ex 3.** $(2 \times 1 \text{ pts})$ Draw the following surfaces and describe them in your own words.
 - a) $z = -x^2 y^2 + 2$ b) $x = z^2$

Theory (2+1 pts) a) Give the definition of spherical coordinates, mark all angles and the radius on a diagram.

x =y =z =Jacobian =

b) Describe an upper hemisphere of radius 2 in spherical coordinates. You may draw it if you wish.

 $r\in [\ \dots \ , \ \dots \], \quad \phi\in [\ \dots \ , \ \dots \], \quad \theta\in [\ \dots \ , \ \dots \].$

Theory (2 pts) Give two applications of a double integral other than the one used in **Ex 1**. Provide graphs and formulas as well.

Ex 4. (3 pts) Find the mass of a parallelepiped $P = [0,1] \times [0,2] \times [0,2]$ if its density is given by function $\rho(x, y, z) = x^4 + y^3$. Draw the parallelepiped and discuss its density at four different points.

Ex 5. (1 pt) Check if $y = \frac{5}{2}x^2 + \frac{1}{2x^2}$ is a solution to equation $y' + \frac{2}{x}y = 10x$.

Ex 6. (1.5 pts) Find y_g and y_p for $y'' = x^2 + 2x + 1$ if y(0) = 1 and y(1) = 1.

Ex 7. (2 pts) Find y_g if $y^2 - 2x^2y' = 0$.

Ex 8. (1.5 pts) Solve a 1st order linear equation $x^2 \cdot y' - 2xy = 3$.