<u>Ex.</u> 1 Compute the integral $\iint_D xy \, dx dy$, over the region *D* bounded by $y = x^2$, $y^2 = x$.

<u>Ex.</u> 2 Compute the area of the region bounded by y = x, $y = \frac{1}{x}$, y = 2, using double integral.

<u>Ex.</u> 3 Compute the volume of the three-dimensional region A bounded by $z = \sqrt{x^2 + y^2}$, $z = x^2 + y^2$.

Ex. 4 Let $V = \{(x, y, z) : x \ge 0, z + x^2 + y^2 \ge 0, z \le \sqrt{x^2 + y^2}, x^2 + y^2 \le 1\}$. Describe the set V by corresponding inequalities in the cylindrical coordinates.

<u>Ex. 5</u> Find the general solution and determine its domain: $y' = \frac{1+x}{x^2y^2}$.

<u>Ex.</u> 6 Find the general solution of the homogeneous differential equation and determine its domain: $y'x^2 = y^2 + yx$.

Ex. 7 Solve the initial problem: $y' + y = e^{-x}$, y(0) = 5. Apply "guessing method".