(Ex 1) (1 pt) Find the domain of $f(x) = \log_{3x-12}(x^2 - 9)$.

(Ex 2) (0.5 pt) Calculate the exact value of $4^{\log_6 4 - \log_6 \frac{1}{9}}$.

(Ex 3) (2 pts) Let $f(x) = 3 \log_2(5x+1)$, find: the inverse function $f^{-1}(x)$, D_f , Y_f , $D_{f^{-1}}$ and $Y_{f^{-1}}$.

(Ex 4) (1.5 pts) Solve $\log_{0.5}(x-3) - \log_{0.5}(3+x) < 2$

(Ex 5) (0.5 pt) Calculate $\sin(\frac{5\pi}{6}) + \cos(\frac{7\pi}{4}) - \tan(\frac{2\pi}{3})$.

(Ex 6) (1 pt) Prove that $\cos(2x) = \frac{1-\tan^2(x)}{1+\tan^2(x)}$.

Theory. (1 pt) Give a definition of a bounded sequence.

(Ex 7) (1 pt) Draw the graph of $f(x) = |2\sin(x + \frac{\pi}{2}) - 1|$ step by step and find D_f and Y_f .

(Ex 8) (2×1 pt) Solve: a) $\sin(2x) = \frac{\sqrt{2}}{2}$,

b) $\tan^3(x) - 1 = -\tan^2(x) + \tan(x)$.

(Ex 9) (1.5 pts) Find D_f , Y_f and draw the graph of $f(x) = 2 \arcsin(\frac{x-1}{2}) + \frac{\pi}{4}$.

							ľ
							1
							1
							ľ
							ľ
 	•••••	 •••••	 	 	 	 	 1

(Ex 10) (1 pt) It is known, that in some geometric sequence $a_4 = 2$. Calculate $a_1 \cdot a_2 \cdot a_3 \cdot a_4 \cdot a_5 \cdot a_6 \cdot a_7$.

(Ex 11) $(4 \times 0.5 \ pt)$ Calculate limits:

a)
$$\lim_{n \to \infty} \frac{3 \cdot 3^{2n+1} - 2 \cdot 2^n + 2}{4 \cdot 4^n - 5 \cdot 9^n + 7} =$$

- b) $\lim_{n \to \infty} (\frac{2n-1}{2n+3})^{2n+2} =$
- c) $\lim_{n \to \infty} \sqrt[n]{e^n + \pi^n + \cos(n)} =$
- d) $\lim_{n \to \infty} \frac{2+4+6+\dots+2n}{1+2+3+\dots+n} =$