Double Integrals - Techniques and Examples

Iterated Integrals on a Rectangle

If function f is continuous on an integral $[a, b] \times [c, d]$, then:

$$\iiint_{[a,b] \times [c,d]} f(x, y) \, dx \, dy = \int_c^d \left(\int_a^b f(x, y) \, dx \right) \, dy = \int_a^b \left(\int_c^d f(x, y) \, dy \right) \, dx.$$

Notation

Instead of $\int_c^d \left(\int_a^b f(x, y) \, dx \right) \, dy$ we may also write $\int_a^b \int_c^d f(x, y) \, dx \, dy$.

Instead of $\int_a^b \left(\int_c^d f(x, y) \, dy \right) \, dx$ we may also write $\int_c^d \int_a^b f(x, y) \, dx \, dy$.

Example 1. Calculate $\iiint_{R} x \, dy \, dx$, where $R = [1, 2] \times [4, 6]$.

Solution:

$$\iiint_{R} x \, dy \, dx = \int_a^b \int_c^d x \, dy \, dx = \int_1^2 \left(\int_4^6 x \, dy \right) \, dx = \int_1^2 \left(\int_4^6 x \, dy \right) \, dx = \frac{1}{2} \left(\int_4^6 x \, dy \right) \, dx = \frac{1}{2} \left[\int_4^6 x \, dy \right] = \frac{1}{2} \left[\frac{x^2}{2} \right]_4^6 = \frac{1}{2} \left(\frac{36}{2} - \frac{16}{2} \right) = \frac{1}{2} \left(18 - 8 \right) = \frac{1}{2} \left(10 \right) = 5.$$

A **double integral of a function with separable variables**

If function f is of form $f(x, y) = g(x) \cdot h(y)$ and g is continuous in $[a, b]$ and h is continuous in $[c, d]$, then:

$$\iiint_{[a,b] \times [c,d]} f(x, y) \, dx \, dy = \int_a^b \left(\int_c^d g(x) \, dx \right) \, dy = \int_c^d \left(\int_a^b h(y) \, dy \right) \, dx.$$

Example 2. Calculate $\iiint_{R} x \, dy \, dx$, where $R = [1, 2] \times [4, 6]$, separating variables.

Solution:

$$\iiint_{R} x \, dy \, dx = \int_a^b \int_c^d x \cdot \frac{1}{y^2} \, dy \, dx = \left(\int_a^b x \, dx \right) \cdot \left(\int_c^d \frac{dy}{y^2} \right) = \left(\int_a^b x \, dx \right) \cdot \left(\int_c^d \frac{dy}{y^2} \right) = \left(\left[\frac{x^2}{2} \right]_a^b \right) \cdot \left(\left[\frac{-1}{y} \right]_c^d \right) = \left(\frac{b^2}{2} - \frac{a^2}{2} \right) \cdot \left(-\frac{1}{d} + \frac{1}{c} \right) = \frac{3}{2} \cdot \frac{1}{12} = \frac{3}{24} = \frac{1}{8}.$$

A **double integral over a simple region**

If f is a continuous function on the vertically simple region

$$D = \{(x, y) : a \leq x \leq b, g(x) \leq y \leq h(x)\},$$

...
then
\[\int_{D} \int f(x, y) \, dP = \int_{a}^{b} \left(\int_{g(x)}^{h(x)} f(x, y) \, dy \right) \, dx. \]

If \(f \) is a continuous function on the horizontally simple region
\[D = \{(x, y) : c \leq y \leq d, \ p(y) \leq x \leq q(y)\}, \]
then
\[\int_{D} \int f(x, y) \, dP = \int_{c}^{d} \left(\int_{p(y)}^{q(y)} f(x, y) \, dx \right) \, dy. \]

Example 3. Evaluate \(\int_{D} (x + y) \, dxdy \) over a region bounded by curves \(xy = 6 \) and \(x + y = 7 \). Sketch a diagram of the region.

Solution: From the system of equations of \(xy = 6 \) and \(x + y = 7 \) (or: \(y = \frac{6}{x}, \ y = 7 - x \)) we obtain two intersection points: \(A = (1, 6) \) and \(B = (6, 1) \).

Region \(D \) is vertically simple, so:
\[
\int_{D} (x + y) \, dxdy = \int_{1}^{6} \left(\int_{y=\frac{6}{x}}^{7-x} (x + y) \, dy \right) \, dx = \int_{1}^{6} \left([xy + \frac{y^2}{2}]_{y=\frac{6}{x}}^{7-x} \right) \, dx
\]
\[
= \int_{1}^{6} \left(x(7 - x) + \frac{(7 - x)^2}{2} - x \cdot \frac{6}{x} - \frac{36}{2x^2} \right) \, dx
\]
\[
= \int_{1}^{6} \left(-\frac{x^3}{2} - \frac{18}{x^2} + \frac{37}{2} \right) \, dx = \left[-\frac{x^3}{6} + \frac{18}{x} + \frac{37x}{2} \right]_{1}^{6} = \frac{125}{3}.
\]

Example 4. Evaluate \(\int_{D} (x - y) \, dxdy \) over a region bounded by curves \(x = y^2 \) and \(x = \frac{y^2}{2} + 1 \). Sketch a diagram of the region.

Solution: From the system of equations of \(x = y^2 \) and \(x = \frac{y^2}{2} + 1 \) we obtain two intersection points: \((-\sqrt{2}, 2) \) and \((\sqrt{2}, 2) \). Region \(D \) is horizontally simple, so:
\[
\int_{D} (x - y) \, dxdy = \int_{-\sqrt{2}}^{\sqrt{2}} \left(\int_{y^2}^{\frac{y^2}{2}+1} (x - y) \, dx \right) \, dy = \int_{-\sqrt{2}}^{\sqrt{2}} \left(\left[\frac{x^2}{2} - xy \right]_{x=y^2}^{x=\frac{y^2}{2}+1} \right) \, dy
\]
\[\int_{-\sqrt{2}}^{\sqrt{2}} \left(\frac{(\frac{y^2}{2} + 1)^2}{2} - (\frac{y^3}{2} + 1)\frac{y}{2} + \frac{y^4}{2} + y^3 \right) dy = \int_{-\sqrt{2}}^{\sqrt{2}} \left(-\frac{3y^4}{8} + \frac{y^3}{6} - \frac{y^2}{2} - y + \frac{1}{2} \right) dy = \]
\[= \left[-\frac{3y^5}{40} + \frac{y^4}{8} + \frac{y^3}{12} - \frac{y^2}{2} + y + \frac{1}{2} \right]_{-\sqrt{2}}^{\sqrt{2}} = \frac{16\sqrt{2}}{15}. \]

Iterated integrals in a reversed order

Example 5. Sketch the region over which the integration \(\int_{1}^{3} \int_{1-x+2}^{x} (2x + 1) \, dy \, dx \) takes place and write an equivalent integral with the order of integration reversed. Evaluate both integrals.

Solution: First let us evaluate:

\[\int_{1}^{3} \int_{1-x+2}^{x} (2x + 1) \, dy \, dx = \int_{1}^{3} \left([y(2x + 1)]_{x+2}^{x} \right) dx = \int_{1}^{3} \left(x(2x + 1) - (-x + 2)(2x + 1) \right) dx \]
\[= \int_{1}^{3} (-2 - 2x + 4x^2) \, dx = \left[-2x - x^2 + \frac{4x^3}{3} \right]_{1}^{3} = \frac{68}{3}. \]

To reverse the order of integration, we need to divide the region into two parts that are horizontally simple. Now:

\[\int_{1}^{3} \int_{1-x+2}^{x} (2x + 1) \, dy \, dx = \int_{1}^{3} \int_{y}^{3} (2x + 1) \, dx \, dy + \int_{-1}^{1} \int_{-y+2}^{3} (2x + 1) \, dx \, dy \]
\[= \int_{1}^{3} \left[x + x^2 \right]_{y}^{3} \, dy + \int_{1}^{3} \left[x + x^2 \right]_{y+2}^{3} \, dy = \int_{1}^{3} (12 - y - y^2) \, dy + \int_{-1}^{1} (6 + 5y - y^2) \, dy \]
\[= \left[12y - \frac{y^2}{2} - \frac{y^3}{3} \right]_{1}^{3} + \left[6y + \frac{5y^2}{2} - \frac{y^3}{3} \right]_{-1}^{1} = \frac{34}{3} + \frac{34}{3} = \frac{68}{3}. \]
Polar coordinates

For any point \(P \) other than the origin, let \(r \) be the distance between \(P \) and the origin, and \(\varphi \) an angle having its initial side on the positive \(x \) axis and its terminal side on the line segment joining \(P \) and the origin. The pair \((r, \varphi)\) is called a set of polar coordinates for the point \(P \).

Every point \((x, y)\) in the plane has both Cartesian and polar coordinates \((r, \varphi)\):

\[
\begin{align*}
 x &= r \cos \varphi \\
 y &= r \sin \varphi
\end{align*}
\]

We have the following result for polar coordinates:

\[
\int_D \int f(x, y) \, dxdy = \int_{\Delta} \int f(r \cos \varphi, r \sin \varphi) r \, drd\varphi.
\]

Example 6. Using polar coordinates, calculate \(\int_D xy^2 \, dxdy \) where \(D : x^2 + y^2 \leq 4, \ x \geq 0 \).

Solution: The region of integration is a semicircle with radius equal 2. Therefore, the region in polar coordinates is given by \(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\) and \(0 \leq r \leq 2\).

After substituting \(x \) and \(y \) with polar coordinates, we have:

\[
\int_D xy^2 \, dxdy = \int_{-\pi/2}^{\pi/2} \left(\int_0^2 (r \cos \theta) \cdot (r \sin \theta)^2 r \, dr \right) d\theta = \int_{-\pi/2}^{\pi/2} \left(\int_0^2 r^4 \sin^2 \theta \cos \theta dr \right) d\theta
\]

\[
= \left(\int_{-\pi/2}^{\pi/2} \sin^2 \theta \cos \theta d\theta \right) \cdot \left(\int_0^2 r^4 dr \right) = \frac{\sin^3 \theta}{3} \bigg|_{-\pi/2}^{\pi/2} \cdot \frac{r^5}{5} \bigg|_0^2 = 64 \frac{15}{15}.
\]

Example 7. Using polar coordinates, calculate \(\int_D (x^2 + y^2) \, dxdy \), where \(D : x^2 + y^2 - 2y \leq 0 \).

Solution (a): Let us represent the equation describing \(D \) in a different form:

\[
\begin{align*}
 x^2 + y^2 - 2y &\leq 0 \\
 x^2 + (y^2 - 2y + 1) - 1 &\leq 0 \\
 x^2 + (y - 1)^2 &\leq 1
\end{align*}
\]
Such an equation describes a circle with the origin in \((0, 1)\), so we cannot describe it with polar coordinates as easily as in Example 6. Let us substitute \(x = r \cos \theta\) and \(y = r \sin \theta\):

\[
\begin{align*}
x^2 + y^2 - 2y &\leq 0 \\
r^2 \cos^2 \theta + r^2 \sin^2 \theta - 2r \sin \theta &\leq 0 \\
r &\leq 2 \sin \theta
\end{align*}
\]

the integral is equal to:

\[
\iint_D (x^2 + y^2) \, dx \, dy = \int_0^\pi \left(\int_0^{2 \sin \theta} r^2 (\sin^2 \theta + \cos^2 \theta) \, dr \right) \, d\theta = \int_0^\pi \left(\int_0^{2 \sin \theta} r^3 \, dr \right) d\theta = \int_0^\pi \left(\frac{r^4}{4} \right)_0^{2 \sin \theta} \, d\theta
\]

\[
= 4 \int_0^\pi \sin^4 \theta \, d\theta = 4 \left[\frac{3\theta}{8} - \frac{\sin 2\theta}{4} + \frac{\sin 4\theta}{32} \right]_0^\pi = \frac{3\pi}{2}.
\]

Angle \(\theta\) ranges from 0 to only \(\pi\), because for \(\theta \in (\pi, 2\pi]\) the radius would be negative – which is impossible.

Solution (b): Since the circle is moved by a vector of \(\vec{v} = (0, 1)\), then we can also move the function \(x^2 + y^2\) by the same vector. The new function will be \(x^2 + (y - 1)^2\). We can now use the method from Example 6:

\[
\iint_D (x^2 + y^2) \, dx \, dy = \int_0^{2\pi} \left(\int_0^1 \left(r^2 \cos^2 \theta + (r \sin \theta - 1)^2 \right) \, dr \right) d\theta = \cdots = \frac{3\pi}{2}.
\]

Area of a bounded region in the plane

The area of a closed bounded plane region \(R\) is given by the formula

\[
\text{Area} = \iint_R 1 \, dx \, dy.
\]

Example 8. Calculate the area of a region bounded by curves \(y = \frac{1}{x},\ y = \sqrt{x}\) and a line \(x = 2\). Sketch the region.

Solution: The area is equal to:

\[
\int_1^2 \left(\int_{y=\frac{1}{x}}^{\sqrt{x}} \, dy \right) \, dx = \int_1^2 [y]_{y=\frac{1}{x}}^{\sqrt{x}} \, dx = \int_1^2 (\sqrt{x} - \frac{1}{x}) \, dx = \left[\frac{2}{3} x^{3/2} - \ln |x| \right]_1^2 = \frac{1}{3} (-2 + 4\sqrt{2} - \ln 8).
\]
Volume
Let R be a bounded region in the OXY plane and f be a function continuous on R. If f is nonnegative and integrable on R, then the volume of the solid region between the graph of f and R is given by

$$\text{Volume} = \iint_R f(x, y) \, dx \, dy.$$

Let R be a bounded region in the xy plane and g_1, g_2 be continuous functions on R. If g_1 and g_2 are integrable on R such that $g_1(x, y) \leq g_2(x, y)$, then the volume of the solid region between the graph of g_1 and g_2 is given by

$$\text{Volume} = \iint_R (g_2(x, y) - g_1(x, y)) \, dx \, dy.$$

Example 9. Calculate the volume of a solid bounded by curves $y = x^2$, $y = 1$, $z = 0$, $z = 2y$.

Solution: The region of integration is bounded by $y = x^2$ and $y = 1$ and $f(x, y) = 2y$.

Therefore:

$$\text{Volume} = \int_{x=-1}^{x=1} \int_{y=x^2}^{y=1} 2y \, dy \, dx = \int_{x=-1}^{x=1} [y^2]_{y=x^2}^{y=1} \, dx = \int_{x=-1}^{x=1} (1 - x^4) \, dx = [x - \frac{x^5}{5}]_{-1}^{1} = 1 - \frac{1}{5} - (-1 + \frac{1}{5}) = 2 - \frac{2}{5} = \frac{8}{5}.$$

Surface
Let S be the surface $z = f(x, y)$ where the points (x, y) come from the given region R in the OXY plane. Then

$$\text{Area}_S = \iint_R \sqrt{1 + (\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2} \, dx \, dy,$$

where f and its first partial derivatives are continuous.

Example 10. Calculate the surface of a plane $2x + 2y + z = 8$ bounded by the coordinate system axes.

Solution: After transformations of the equation of a plane, we have $\frac{x}{4} + \frac{y}{4} + \frac{z}{8} = 1$, so the plane intersects the coordinate system axes at points $A = (4, 0, 0)$, $B = (0, 4, 0)$ and $C = (0, 0, 8)$.

Therefore, the region of integration is bounded by $x = 0$, $y = 0$, $y = -x + 4$. We also have
\[f(x, y) = z = 8 - 2x - 2y, \text{ so } \frac{\partial f}{\partial x} = -2 \text{ and } \frac{\partial f}{\partial y} = -2. \] Therefore:

\[
\text{Surface} = \int_{x=0}^{x=4} \left(\int_{y=0}^{y=-x+4} \sqrt{1 + (-2)^2 + (-2)^2} \, dy \right) \, dx = \int_{x=0}^{x=4} \left(\int_{y=0}^{y=-x+4} \sqrt{9} \, dy \right) \, dx = \int_{x=0}^{x=4} \left(\int_{y=0}^{y=-x+4} 1 \, dy \right) \, dx
\]

\[= 3 \int_{x=0}^{x=4} \left[y \right]_{y=0}^{y=-x+4} \, dx = 3 \int_{x=0}^{x=4} (-x + 4) \, dx = 3\left[-\frac{x^2}{2} + 4x \right]_{0}^{4} = 24. \]