Structural Stability

Conversion from Imperfection-Sensitive into Imperfection-Insensitive Elastic Structures

Part I: Theory

H. A. Mang

C. Schranz, P. Mackenzie-Helnwein, B. Krenn

Centre for Urban Construction and Rehabilitation
Faculty of Civil and Environmental Engineering
Gdańsk University of Technology

Gdańsk

March 22, 2005
Motivation

Koiter’s initial postbuckling analysis in the context of the FEM

Symmetric bifurcation

Triples of values λ_4, a_1, and a_1^*

Consistently linearized eigenvalue problem

General case: nonlinear prebuckling paths

Special case: linear prebuckling paths

Completeness of solutions from Koiter’s initial postbuckling analysis

Conclusions
Motivation

- it is desirable to modify an imperfection-sensitive structure such that it becomes imperfection-insensitive

\[S \approx S \]

\[\lambda \]

\[u \]

\[\times \] example for an unsuitable strategy to achieve this goal.
Motivation

it is desirable to modify an imperfection-sensitive structure such that it becomes imperfection-insensitive

example for an suitable strategy to achieve this goal.
Koiter’s initial postbuckling analysis

Development of the function $G|_D$ as a Taylor series at the bifurcation point $C(u_C, \lambda_C)$:

$G^+(v, \eta) := G(\tilde{u}(\tilde{\lambda}(\eta)) + v, \tilde{\lambda}(\eta))$

$\Delta \lambda = \tilde{\lambda}(\eta) - \lambda_C$
\[
G^+ (v, \tilde{\lambda}) = \text{primary path} + \\
+ K_T \cdot v^+ + K_T,\lambda \cdot v^+ \Delta \lambda + \frac{1}{2} \tilde{K}_T,\lambda\lambda \cdot v^+ \Delta \lambda^2 + \cdots \\
+ \frac{1}{6} \tilde{K}_T,\lambda\lambda\lambda \cdot v^+ \Delta \lambda^3 + \frac{1}{24} K_T,\lambda\lambda\lambda\lambda \cdot v^+ \Delta \lambda^4 + \cdots \\
+ \frac{1}{2} K_T, v : v^+ \otimes v^+ + \frac{1}{2} K_T, u : v^+ \otimes v^+ \Delta \lambda + \cdots \\
+ \frac{1}{4} K_T, u\lambda\lambda : v^+ \otimes v^+ \Delta \lambda^2 + \frac{1}{12} K_T, u\lambda\lambda\lambda : v^+ \otimes v^+ \Delta \lambda^3 + \cdots \\
= 0
\]

- **Asymptotic developments** at the bifurcation point \(C(u_c, \lambda_c) \):

\[
v^+ (\eta) = v_1 \eta + v_2 \eta^2 + v_3 \eta^3 + v_4 \eta^4 + \cdots \\
\Delta \lambda (\eta) = \lambda_1 \eta + \lambda_2 \eta^2 + \lambda_3 \eta^3 + \lambda_4 \eta^4 + \cdots
\]
Koiter’s initial postbuckling analysis

Notes:

- The following abbreviations are used:

 \[K_{T, \text{uu}} : v_1 \otimes v_2 \rightarrow K_{T, \text{uu}} v_1 v_2 \]

 \[K_{T, \text{uuu}} : v_1 \otimes v_2 \otimes v_3 \rightarrow K_{T, \text{uuu}} v_1 v_2 v_3 \]

 \[K_{T, \text{u}} v = \frac{\partial K_T}{\partial u} v \]

 \[\tilde{K}_{T, \lambda} = \frac{\partial K_T}{\partial u} \frac{d u}{d \lambda} \]

 \[K_{T, \text{u} \lambda} v = \frac{\partial^2 K_T}{\partial u^2} \frac{d u}{d \lambda} v \]

 \[\tilde{K}_{T, \lambda \lambda} = \frac{\partial^2 K_T}{\partial u^2} \frac{d u}{d \lambda} \frac{d u}{d \lambda} + \frac{\partial K_T}{\partial u} \frac{d^2 u}{d \lambda^2} \]

- The matrices in red color are zero in case of a linear prebuckling path!
Koiter’s initial postbuckling analysis

Notes:

- **calculation of the above matrices:**

\[
D_u K_T \cdot \xi = \frac{d}{d\alpha} K_T (u + \alpha \xi) \bigg|_{\alpha=0}
\]

\[
K_T : u \quad v = D_u K_T \cdot v = \frac{d}{d\alpha} K_T (u + \alpha v) \bigg|_{\alpha=0}
\]

\[
\tilde{K}_T : \lambda = D_u K_T \cdot \frac{du}{d\lambda} = \frac{d}{d\alpha} K_T \left(u + \alpha \frac{du}{d\lambda}\right) \bigg|_{\alpha=0}
\]

\[
K_T : u \lambda \cdot v = D_u \left[D_u K_T \cdot \frac{du}{d\lambda}\right] \cdot v = \frac{d^2}{d\alpha d\beta} K_T \left(u + \alpha \frac{du}{d\lambda} + \beta v\right) \bigg|_{\alpha=0, \beta=0}
\]

\[
\tilde{K}_T : \lambda \lambda = K_T : uu \frac{du}{d\lambda} \frac{du}{d\lambda} + K_T : u \frac{d^2 u}{d\lambda^2} =
\]

\[
= \frac{d^2}{d\alpha^2} K_T \left(u + \alpha \frac{du}{d\lambda}\right) \bigg|_{\alpha=0} + \frac{d}{d\alpha} K_T \left(u + \alpha \frac{d^2 u}{d\lambda^2}\right) \bigg|_{\alpha=0}
\]
H. A. Mang

Koiter’s initial postbuckling analysis

\[\begin{align*}
\eta \cdot (K_T v_1) + & \\
\eta^2 \cdot (K_T v_2 + \tilde{K}_T,\lambda v_1 \lambda_1 + \frac{1}{2} K_T, u v_1 v_1) + & \\
\eta^3 \cdot (K_T v_3 + \tilde{K}_T,\lambda v_1 \lambda_2 + K_T,\lambda v_2 \lambda_1 + \frac{1}{2} \tilde{K}_T,\lambda \lambda v_1 \lambda_1^2 + & \\
+ K_T, u v_1 v_2 + \frac{1}{2} K_T, u \lambda v_1 v_1 \lambda_1 + \frac{1}{6} K_T, u u v_1 v_1 v_1) + & \\
\eta^4 \cdot (K_T v_4 + \tilde{K}_T,\lambda v_1 \lambda_3 + \tilde{K}_T,\lambda v_2 \lambda_2 + \tilde{K}_T,\lambda v_3 \lambda_1 + \tilde{K}_T,\lambda \lambda v_1 \lambda_1 \lambda_2 + & \\
+ \frac{1}{2} \tilde{K}_T,\lambda \lambda v_2 \lambda_1^2 + \frac{1}{6} \tilde{K}_T,\lambda \lambda \lambda v_1 \lambda_1^3 + K_T, u v_1 v_3 + \frac{1}{2} K_T, u v_2 v_2 + & \\
+ \frac{1}{2} K_T, u \lambda v_1 v_1 \lambda_2 + K_T, u \lambda v_1 v_2 \lambda_1 + \frac{1}{4} K_T, u \lambda \lambda v_1 v_1 \lambda_1^2 + & \\
+ \frac{1}{2} K_T, u u v_1 v_1 v_2 + \frac{1}{6} K_T, u u \lambda v_1 v_1 v_1 \lambda_1 + \frac{1}{24} K_T, u u u v_1 v_1 v_1 v_1) + & \\
\vdots \quad O(\eta^5) \quad & = 0
\end{align*} \]
Koiter’s initial postbuckling analysis

Calculation of the coefficients λ_i, $i = 1, 2, \ldots, 5$

- from the coefficient of η: $K_T v_1 = 0 \Rightarrow v_1 \ldots$ eigenvector
- from the coefficient of η^2 \[\Rightarrow \lambda_1 \rightarrow v_2 \]
 Premultiplication with v_1^T yields \[\lambda_1 = b_0 = -\frac{1}{2} \frac{v_1^T K_T, u v_1 v_1}{v_1^T \tilde{K}_T, \lambda v_1} \]
- from the coefficient of η^3 \[\Rightarrow \lambda_2 \rightarrow v_3 \]
 Premultiplication with v_1^T yields \[\lambda_2 = a_1 \lambda_1^2 + b_1 \lambda_1 + d_1 \quad \text{with} \quad a_1 = -\frac{1}{2} \frac{v_1^T \tilde{K}_T, \lambda \lambda v_1}{v_1^T \tilde{K}_T, \lambda v_1} \] (1)

$a_1 \ldots "\text{nonlinearity coefficient}"

trivially zero in case of linear prebuckling path \[\Rightarrow \tilde{K}_T, \lambda \lambda = 0 \]
from the coefficient of $\eta^4 \Rightarrow \lambda_3 \rightarrow \mathbf{v}_4$

Premultiplication with \mathbf{v}_1^T yields

$$\lambda_3 = a_1^* \lambda_1^3 + b_1^* \lambda_1^2 + c_1^* \lambda_1 + e_1^*$$

$$a_1^* = -\frac{1}{6} \frac{\mathbf{v}_1^T \mathbf{K}_T ; \lambda \lambda \lambda \mathbf{v}_1}{\mathbf{v}_1^T \mathbf{\tilde{K}}_T , \lambda \mathbf{v}_1}$$

from the coefficient of $\eta^5 \Rightarrow \lambda_4 \rightarrow \mathbf{v}_5$

Premultiplication with \mathbf{v}_1^T yields

$$\lambda_4 = \hat{a}_1 \lambda_1^4 + \hat{b}_1 \lambda_1^3 + \hat{c}_1 \lambda_1^2 + \hat{d}_1 \lambda_1 + \hat{f}_1$$

$$\hat{a}_1 = -\frac{1}{24} \frac{\mathbf{v}_1^T \mathbf{K}_T ; \lambda \lambda \lambda \lambda \mathbf{v}_1}{\mathbf{v}_1^T \mathbf{\tilde{K}}_T , \lambda \mathbf{v}_1}$$

from the coefficient of $\eta^6 \Rightarrow \lambda_5 \rightarrow \mathbf{v}_6$

Premultiplication with \mathbf{v}_1^T yields

$$\lambda_5 = \tilde{a}_1 \lambda_1^5 + \tilde{b}_1 \lambda_1^4 + \tilde{c}_1 \lambda_1^3 + \tilde{d}_1 \lambda_1^2 + \tilde{e}_1 \lambda_1 + \tilde{g}_1$$

$$\tilde{a}_1 = -\frac{1}{120} \frac{\mathbf{v}_1^T \mathbf{K}_T ; \lambda \lambda \lambda \lambda \lambda \mathbf{v}_1}{\mathbf{v}_1^T \mathbf{\tilde{K}}_T , \lambda \mathbf{v}_1}$$
Symmetric bifurcation \(\lambda_1 = \lambda_3 = \lambda_5 = \cdots = 0 \)

The equations (1.1), (2), (3), and (4) can be rewritten as:

\[
a_1 \lambda_1^2 + b_1 \lambda_1 + c_1 = 0 \quad \text{with} \quad c_1 = d_1 - \lambda_2
\]
\[
a_1^* \lambda_1^3 + b_1^* \lambda_1^2 + c_1^* \lambda_1 + d_1^* = 0 \quad \text{with} \quad d_1^* = e_1^* - \lambda_3
\]
\[
\hat{a}_1 \lambda_1^4 + \hat{b}_1 \lambda_1^3 + \hat{c}_1 \lambda_1^2 + \hat{d}_1 \lambda_1 + \hat{e}_1 = 0 \quad \text{with} \quad \hat{e}_1 = \hat{f}_1 - \lambda_4
\]
\[
\tilde{a}_1 \lambda_1^5 + \tilde{b}_1 \lambda_1^4 + \tilde{c}_1 \lambda_1^3 + \tilde{d}_1 \lambda_1^2 + \tilde{e}_1 \lambda_1 + \tilde{f}_1 = 0 \quad \text{with} \quad \tilde{f}_1 = \tilde{g}_1 - \lambda_5
\]

◊ the underlined coefficients must vanish (for symmetric bifurcation)

from \(\tilde{e}_1 = 0 \) \(\Rightarrow \)

\[
a_1 \lambda_2^2 + b_2 \lambda_2 + d_3 - \lambda_4 = 0
\] (5)

◊ some of the remaining coefficients may vanish

if \(c_1^* = c_1^*(\kappa) = 0 \) \(\Rightarrow \) (5) disintegrates into

\[
2a_1 \lambda_2 + b_2 = 0 \quad a_1 \lambda_2^2 - d_3 + \lambda_4 = 0
\] (6)
Symmetric bifurcation

- symmetric bifurcation from nonlinear prebuckling paths is associated either with

relation I

\[v_j^T \tilde{K}_T,\lambda \lambda v_1 = 0, \quad j \neq 1 \]

or with

relation II

\[v_1^T \tilde{K}_T,\lambda \lambda \lambda v_1 = 0 \quad \rightarrow \quad a_1^* = 0 \]

\(v_j^* \ldots j\text{-th eigenvalue of the so-called } \text{consistently linearized eigenproblem} \)

- Relation I occurs together either with \(c_1^* \neq 0 \) (5) or \(c_1^* = 0 \) (6)
- Relation II only occurs together with \(c_1^* = 0 \) (6)
Symmetric bifurcation

- For relation I: \(v_j^T \tilde{K}_T,\lambda \lambda v_1 = 0, \ j \neq 1 \) \(\lambda_2 = 0, \ k = 1, 2, \ldots \ \Rightarrow \tilde{\lambda}(\eta) = \lambda_C = \text{const.} \)

- For relation II: \(v_1^T \tilde{K}_T,\lambda \lambda v_1 = 0 \) \(\Rightarrow a_1 = 0, \lambda_2 = 0, \lambda_4 < 0 \)

- For relation I and relation II: \(\tilde{K}_T,\lambda \lambda v_1 = 0 \) \(\Rightarrow a_1 = 0, \lambda_2 = 0, \lambda_4 = 0, \lambda_6 < 0 \)
Triples of values λ_4, a_1, and a_1^*

- the following triples of values λ_4, a_1, a_1^* are obtained:

 $\lambda_4 = 0$, $a_1 < 0$, $a_1^* < 0$, $a_1^* > 0$,

 $\lambda_4 = 0$, $a_1 = 0$ (with $\bar{K}_{T,\lambda\lambda}v_1 = 0$), $a_1^* = 0$, $a_1^* > 0$,

 $\lambda_4 < 0$, $a_1 = 0$ (with $\bar{K}_{T,\lambda\lambda}v_1 \neq 0$), $a_1^* = 0$, $a_1^* > 0$,

 $\lambda_4 = 0$, $a_1 = 0$ (with $\bar{K}_{T,\lambda\lambda}v_1
eq 0$), $a_1^* = 0$, $a_1^* > 0$.

\[v_j^* T K_{T,\lambda\lambda} v_1 = 0, j \neq 1 \]
\[a_1^* < 0 \]
Triples of values λ_4, a_1, and a_1^*

- five octants as geometric loci of triples of values $(\lambda_2, \lambda_4, a_1)$:
 - octants I, II, and IV:
 $$v_1^T \tilde{K}_T, \lambda v_1 = -1 \quad \text{and} \quad v_1^T \tilde{K}_T, \lambda \lambda v_1 \geq 0$$
 - octants V and VII:
 $$v_1^T \tilde{K}_T, \lambda v_1 = -1 \quad \text{and} \quad v_1^T \tilde{K}_T, \lambda \lambda v_1 \leq 0$$
 - octant VII, alternatively:
 $$v_1^T \tilde{K}_T, \lambda v_1 = +1 \quad \text{and} \quad v_1^T \tilde{K}_T, \lambda \lambda v_1 \geq 0$$
Consistently linearized Eigenproblem

- **Aim**: specific geometric properties of the eigenvalue curve of this problem for different situations at point $T \rightarrow \lambda_2 = 0$

- Investigation of the coefficient a_1

 - condition for the stability limit $\lambda = \lambda_S$ on nonlinear load-displacement paths:

 $$K_T(u(\lambda_S)) \mathbf{v} = 0$$

- Taylor series expansion of $K_T(\lambda_S)$ at $\lambda < \lambda_S$:

 $$\left[K_T + (\lambda^* - \lambda) + \frac{1}{2} (\lambda^* - \lambda)^2 \tilde{K}_{T,\lambda\lambda} + \cdots \right] \mathbf{v} = 0$$
Motivation
Koiter
Symmetric bifurcation

Triples of values $\lambda_4, a_1, \text{ and } a_1^-$

Consistently linearized eigenvalue problem

General case: nonlinear prebuckling paths

Special case: linear prebuckling paths

Completeness of solutions from Koiter's initial postbuckling analysis

Conclusions

Consistently linearized Eigenproblem

- neglecting terms of higher than first order in $(\lambda_S - \lambda)$ yields the so-called

$$\begin{bmatrix} K_T + (\lambda^* - \lambda) \tilde{K}_{T,\lambda} \end{bmatrix} v^* = 0$$

λ^*: estimate of λ_S

v^*: eigenvector

- because of the singularity of K_T at the stability limit,

$$\lambda^* - \lambda = 0 \quad \rightarrow \quad \lambda^* = \lambda_1^*, \quad \lambda = \lambda_S, \quad v^* = v_1^* = v_1$$

- derivation of (8) with respect to λ yields

$$\left[\lambda^*, \tilde{K}_T, \lambda + (\lambda^* - \lambda) \tilde{K}_T, \lambda, \lambda \right] v^* + \left[K_T + (\lambda^* - \lambda) \tilde{K}_T, \lambda \right] v^*, \lambda = 0$$
At a **stability limit** in form of a bifurcation point, in general,

\[\lambda^*_{,\lambda} = 0, \quad v^*_{1,\lambda} = a_1 v_1 \quad (10) \]

- Derivation of (9) with respect to \(\lambda \), specialization for the stability limit and premultiplication by \(v^T_1 \) gives

\[\lambda^*_{,\lambda\lambda} v^T_1 \tilde{K}_{T,\lambda} v_1 - v^T_1 \tilde{K}_{T,\lambda\lambda} v_1 = 0 \quad (11) \]

Comparing (11) with (1.2) shows that

\[\lambda^*_{,\lambda\lambda} = 2 a_1 \quad (12) \]

- Specialization of (10.2) and (12) for \(a_1 = 0 \) yields

\[v^*_{1,\lambda} = 0, \quad \lambda^*_{1,\lambda\lambda} = 0 \quad (13) \]
Motivation

Koiter

Symmetric bifurcation

Triples of values λ_4, a_1, and a_1

Consistently linearized eigenvalue problem

General case: nonlinear prebuckling paths

Special case: linear prebuckling paths

Completeness of solutions from Koiter's initial postbuckling analysis

Conclusions

$\lambda_2 - \lambda_4 - a_1$ curves containing point $T \rightarrow \lambda_2 = 0$

Mode a:

Horizontal projection

Mode b:

Horizontal projection
\(\lambda_2 - \lambda_4 - a_1\) curves containing point \(T \rightarrow \lambda_2 = 0\)

Mode c:

\[\begin{align*}
F^0 & \rightarrow H^0 \\
S^0 & \rightarrow S^0
\end{align*} \]

Horizontal projection

Mode d:

\[\begin{align*}
F & \rightarrow F^0 \\
S & \rightarrow S^0 \\
T & \rightarrow T
\end{align*} \]

Horizontal projection

\(H \ldots\) coincidence of bifurcation point and snap-through point
$\lambda_2 - \lambda_4 - a_1$ curves containing point $T \rightarrow \lambda_2 = 0$

Mode e:

Mode f:
\(\lambda_2 - \lambda_4 - a_1 \) curves containing point \(T \rightarrow \lambda_2 = 0 \)

Mode \(g \):

- \(S = F = N = T \)
- \(\lambda_2 \) and \(\lambda_4 \)

Mode \(h \):

- \(S = T \)
- \(F = N = T \)
- \(\lambda_2 \) and \(\lambda_4 \)
another distinctive feature of these curves follows from the first two partial derivatives of

$$2a_1 \lambda_2 + b_2 = 0$$

with respect to a design parameter κ:

$$2 (a_1, \kappa \lambda_2 + a_1 \lambda_2, \kappa) + b_2, \kappa = 0$$

and

$$2 (a_1, \kappa \kappa \lambda_2 + 2a_1, \kappa \lambda_2, \kappa + a_1 \lambda_2, \kappa \kappa) + b_2, \kappa \kappa = 0$$

Specialization for $\lambda_2 = 0$ and $a_1 = 0$ gives

$$b_2, \kappa = 0 \quad \text{and} \quad 2a_1, \kappa \lambda_2, \kappa + b_2, \kappa \kappa = 0$$
Sensitivity analysis

Values of λ_2, κ, λ_4, and a_1 **for points** $T(\lambda_2 = 0, \lambda_4, a_1)$

<table>
<thead>
<tr>
<th>Mode ()</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_2, κ</td>
<td>$\neq 0$</td>
<td>$\neq 0$</td>
<td>0</td>
<td>$\neq 0$</td>
</tr>
<tr>
<td>λ_4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>< 0</td>
</tr>
<tr>
<td>a_1</td>
<td>< 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode ()</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_2, κ</td>
<td>$\lambda_2(\kappa) \geq 0$</td>
<td>$\lambda_2(\kappa) = 0$</td>
<td>$\lambda_2(\kappa) = 0$</td>
<td>$\lambda_2(\kappa) = 0$</td>
</tr>
<tr>
<td>λ_4</td>
<td>$\lambda_4(\kappa) = 0$</td>
<td>$\lambda_4(\kappa) = 0$</td>
<td>$\lambda_4(\kappa) = 0$</td>
<td>$\lambda_4(\kappa) < 0$</td>
</tr>
<tr>
<td>a_1</td>
<td>$a_1(\kappa) \geq 0$</td>
<td>$a_1(\kappa) < 0$</td>
<td>$a_1(\kappa) = 0$</td>
<td>$a_1(\kappa) = 0$</td>
</tr>
</tbody>
</table>
Discussion of Modes (a) – (h)

Mode (a)

- at point T
 \[\lambda_2 = 0, \quad \lambda_4 = 0, \quad \lambda_6 = 0, \ldots \]
 \[a_1 < 0, \quad a_1^* < 0 \]
 \[v_1^*; \lambda \lambda = 3 (a_1^2 + a_1^*) v_1 \]

- at point I
 \[\lambda_2 > 0, \quad \lambda_4 > 0, \quad \lambda_6 > 0, \ldots \]
 \[\ddot{K}_T; \lambda \lambda v_1 = 0 \quad \rightarrow \quad a_1 = 0, \]
 \[a_1^* > 0 \]

✔ conversion from imperfection sensitivity into insensitivity
Mode (b) at point T

\[\lambda_2 = 0, \quad \lambda_4 = 0, \quad \lambda_6 = 0, \ldots \]

\[\tilde{K}_T;\lambda\lambda \mathbf{v}_1 = 0 \quad \rightarrow \quad a_1 = 0, \quad a_1^* > 0 \]

\[\mathbf{v}_1^*;\lambda\lambda = 3a_1^*\mathbf{v}_1 \]

Conversion from imperfection sensitivity into insensitivity
Discussion of Modes (a) – (h)

○ Mode (c)

- at point T
 \[\tilde{K}_{T;\lambda\lambda} v_1 = 0 \quad \rightarrow \quad a_1 = 0 \]
 \[v_1^*,\lambda = 0, \quad v_1^*,\lambda\lambda = 0 \]
 \[v_1^*,\lambda\lambda = 0 \]

- at point H (hilltop bifurcation)
 \[v_1^*,\lambda = 0, \quad v_1^*,\lambda\lambda = 0, \]
 \[\lambda_2 < 0, \quad \lambda_4 < 0, \]
 \[\lambda_1^*,\lambda = -1, \quad a_1 = -\infty \]

-x no conversion from imperfection sensitivity into insensitivity
 \[\iff \quad \text{transition from } \lambda_4 > 0 \text{ to } \lambda_4 < 0 \]
Discussion of Modes (a) – (h)

Mode (d)

At point T

$$\lambda_2 = 0, \quad \lambda_4 < 0,$$

$$v_1^T \tilde{K}_T;\lambda \lambda v_1 = 0 \quad \rightarrow \quad a_1 = 0$$

$$v_1^T \tilde{K}_T;\lambda \lambda v_1 = 0 \quad \rightarrow \quad a_1^* = 0$$

$$v_1^*, \lambda \lambda = \sum_{j=2}^{n} c_{1j} \lambda v_j^*$$

- conversion from imperfection sensitivity into insensitivity
Discussion of Modes (a) – (h)

Mode (e)

at point T

$\lambda_2 = 0, \quad \lambda_4 = 0,$

$a_1 = 0$

$\nu^*_1, \lambda = 0$

conversion from imperfection sensitivity into insensitivity
Discussion of Modes (a) – (h)

Mode (f)

- at point $F = N = T$
 - $\lambda, \xi = 0$, $\lambda, \xi \xi = 0$,
 - $v_1 = 0$,
 - $\lambda, \lambda = -1$, $a_1 = -\infty$
 - $v_1^*, \lambda \lambda = 3 (a_1^2 + a_1^*) v_1$
 - $\tilde{K}_T d\tilde{u} = 0$

✅ transition from bifurcation buckling to no buckling
Discussion of Modes (a) – (h)

Mode (g) (von Mises truss)

- at point $F = N = T$
 $$\lambda_2 = 0, \quad \lambda_4 = 0, \quad \lambda_6 = 0, \ldots$$
 $$\tilde{K}_T \lambda \lambda v_1 = 0 \quad \rightarrow \quad a_1 = 0,$$
 $$\tilde{K}_T d\tilde{u} = 0$$
 $$v_1^*, \lambda \lambda = 3 a_1^* v_1$$

- "final situation": saddle point of higher order
 $$\lambda_1^* - \lambda = 0, \quad \lambda_1^*, \lambda = 0, \quad \lambda_1^*, \lambda \lambda = 0$$
 $$\lambda_1^*, \lambda \lambda \lambda = 0, \quad \lambda_1^*, \lambda \lambda \lambda \lambda = 0$$

- transition from bifurcation buckling to no buckling
Discussion of Modes (a) – (h)

Mode (g) (cylindrical panel)

- at point \(F = N = T \)
 \[
 \lambda_2 = 0, \quad \lambda_4 = 0, \quad \lambda_6 = 0, \ldots
 \]
 \[
 \tilde{K}_T;_{\lambda\lambda} v_1 = 0 \quad \rightarrow \quad a_1 = 0,
 \]
 \[
 \tilde{K}_T d\tilde{u} = 0
 \]
 \[
 v_1^*,_{\lambda\lambda} = 0
 \]

- “final situation”: saddle point of higher order
 \[
 \lambda^*_1 - \lambda = 0, \quad \lambda^*_1;_{\lambda\lambda} = 0, \quad \lambda^*_1;_{\lambda\lambda\lambda\lambda} = 0
 \]
 \[
 \lambda^*_1;_{\lambda\lambda\lambda\lambda} = 0, \quad \lambda^*_1;_{\lambda\lambda\lambda\lambda\lambda\lambda} = 0
 \]

- transition from bifurcation buckling to no buckling
Mode (h)

at point T

\[\lambda_2 = 0, \quad \lambda_4 < 0, \]

\[a_1(\kappa) = 0, \]

\[\mathbf{v}_1^T \tilde{\mathbf{K}}_{T,\lambda\lambda} \mathbf{v}_1 = 0 \quad \rightarrow \quad a_1 = 0, \]

\[\mathbf{v}_1^T \tilde{\mathbf{K}}_{T,\lambda\lambda\lambda} \mathbf{v}_1 = 0 \quad \rightarrow \quad a_1^* = 0 \]

\[\mathbf{v}_1^*,\lambda\lambda = \sum_{j=2}^{n} c_{1j,\lambda} \mathbf{v}_j^* \]

transition from bifurcation buckling to no buckling
Linear prebuckling paths

For the special case of buckling from linear prebuckling paths
\[\tilde{K}_{T,\lambda\lambda} = 0 \rightarrow a_1 = 0, \quad \tilde{K}_{T,\lambda\lambda\lambda} = 0 \rightarrow a_1^* = 0, \quad \ldots \]

Therefore, relation I
\[v_j^T \tilde{K}_{T,\lambda\lambda} v_1 = 0, \quad j \neq 1, \]
and relation II
\[v_1^T \tilde{K}_{T,\lambda\lambda\lambda} v_1 = 0 \rightarrow a_1^* = 0 \]
are satisfied trivially.

Therefore, there are no restrictions on the plane curves \(\lambda_2 = \lambda_2(\kappa), \lambda_4 = \lambda_4(\kappa) \), analogous to the ones for the general case!
Completeness of solutions

For bifurcation from nonlinear prebuckling paths

\[\mathbf{v}_{1}^{*}, \lambda = a_{1} \mathbf{v}_{1} \]

\[\mathbf{v}_{1}^{*}, \lambda \lambda = 3 \left(a_{1}^{2} + a_{1}^{*} \right) \mathbf{v}_{1} + \sum_{j=2}^{n} c_{1j}, \lambda \mathbf{v}_{j}^{*} \]

Following from relation I and relation II, respectively, \(\mathbf{v}_{1}^{*}, \lambda \lambda \) disintegrates into

\[\mathbf{v}_{1}^{*}, \lambda \lambda = 3 \left(a_{1}^{2} + a_{1}^{*} \right) \mathbf{v}_{1}, \quad c_{1j}, \lambda = 0, \quad j \neq 0 \] (14)

or

\[\mathbf{v}_{1}^{*}, \lambda \lambda = 3 a_{1}^{2} \mathbf{v}_{1} + \sum_{j=2}^{n} c_{1j}, \lambda \mathbf{v}_{j}^{*} \] (15)
Completeness of solutions

Mode (a): \(v_1^*, \lambda = a_1 v_1\), \(v_1^*, \lambda \lambda = 3 \left(a_1^2 + a_1^* \right) v_1\)

Mode (b): \(v_1^*, \lambda = 0\), \(v_1^*, \lambda \lambda = 3 a_1^* v_1\)

Mode (c): \(v_1^*, \lambda = 0\), \(v_1^*, \lambda \lambda = 0\)

Mode (d): \(v_1^*, \lambda = 0\), \(v_1^*, \lambda \lambda = \sum_{j=2}^{n} c_{1j} \lambda v_j^*\)

Mode (e): same as Mode (c)

Mode (f): same as Mode (a)

Mode (g): same as Mode (b) or Mode (c)

Mode (h): same as Mode (d)

\(\Rightarrow\) Mode (a) and Mode (b) represent a complete subset of (I)

\(\Rightarrow\) Mode (c) and Mode (d) represent a complete subset of (II)
Conclusions

- Conversion from imperfection-sensitive into imperfection-insensitive structures requires symmetric bifurcation.

- Symmetric bifurcation from nonlinear prebuckling paths is associated either with $v_j^T \tilde{K}_T,\lambda \lambda v_1 = 0$, $j \neq 1$ or with $v_1^T \tilde{K}_T,\lambda \lambda \lambda v_1 = 0$.

- The geometric loci of all points in the $\lambda_2, \lambda_4, a_1$ space are solutions of $\lambda_4 = a_1 \lambda_2^2 + b_2 \lambda_2 + d_3$. For $\lambda_2 = 0$, they are restricted to the two half-axes $\lambda_4 \leq 0$ and $a_1 \leq 0$.

- $\lambda_2 = 0$ is a necessary but not sufficient condition for the transition to imperfection insensitivity.
Structural Stability

Conversion from Imperfection-Sensitive into Imperfection-Insensitive Elastic Structures
Part II: Numerical Analyses

H. A. Mang
C. Schranz, P. Mackenzie-Helnwein, B. Krenn

Centre for Urban Construction and Rehabilitation
Faculty of Civil and Environmental Engineering
Gdańsk University of Technology

Gdańsk March 22, 2005
Example 1: Pin-jointed bar with two degrees of freedom

Example 2: von Mises truss

Example 3: cylindrical panel

Example 4: Pin-jointed bar with linear prebuckling paths

Conclusions
Pin-jointed bar with two degrees of freedom

design parameters:
- spring stiffness
- initial rise
Pin-jointed bar – increase of spring stiffness

conversion from imperfection sensitivity into insensitivity

c_{1} = 0

c_{1} = 1.5

c_{1} \approx 5.6

load-displacement paths

\lambda^{*} - \lambda \text{ curves}
Pin-jointed bar – increase of spring stiffness

\(\lambda_2 - \lambda_4 - a_1 \) curve

Mathematical conditions

- At point \(T \)
 \[\lambda_2 = 0, \quad \lambda_4 = 0, \quad \lambda_6 = 0, \ldots \]
 \[a_1 < 0, \quad a_1^* < 0, \]
 \[v_1^*, \lambda \lambda = 3 \left(a_1^2 + a_1^* \right) v_1 \]

- At point \(I \)
 \[\lambda_2 > 0, \quad \lambda_4 > 0, \quad \lambda_6 > 0, \ldots \]
 \[\tilde{K}_{T, \lambda \lambda} v_1 = 0 \quad \Rightarrow \quad a_1 = 0, \]
 \[a_1^* > 0 \]
Pin-jointed bar – decrease of initial rise

- transition from bifurcation buckling to no buckling

\[\phi_0 = 0.90 \quad \phi_0 = 0.70 \quad \phi_0 \approx 0.55 \quad \phi_0 = 0.50 \]

load-displacement paths

\[\lambda^* - \lambda \text{ curves} \]
Pin-jointed bar – decrease of initial rise

\[\lambda_2 - \lambda_4 - a_1 \] curve

\[\mathbf{v}_1^*, \lambda \lambda = 3 \left(a_1^2 + a_1^* \right) \mathbf{v}_1 \]

- at point \(F = N = T \)

\[\lambda, \xi = 0, \quad \lambda, \xi \xi = 0, \]
\[\mathbf{v}_1 = 0, \]
\[\lambda, \lambda = -1, \quad a_1 = -\infty, \]
\[\tilde{K}_T d\tilde{u} = 0 \]
von Mises truss

design parameters:

- spring stiffness
- initial rise

load displacement path:

λ-λ curve:
von Mises truss – increase of spring stiffness

conversion from imperfection sensitivity into insensitivity

\[c = 24 \text{ kN/cm} \]
\[c \approx 40.8 \text{ kN/cm} \]
\[c = 100 \text{ kN/cm} \]

load-displacement paths

\[\lambda^* - \lambda \] curves
von Mises truss – increase of spring stiffness

\[\lambda_2 - \lambda_4 - a_1 \] curve

mathematical conditions

- at point \(T \)
 \[\lambda_2 = 0, \quad \lambda_4 = 0, \quad \lambda_6 = 0, \quad \ldots \]
 \[\tilde{K}_{T, \lambda \lambda} v_1 = 0 \quad \rightarrow \quad a_1 = 0, \quad a_1^* > 0, \]
 \[v_1^*, \lambda \lambda = 3a_1^* v_1 \]
von Mises truss – decrease of initial rise

borderline case

transition from bifurcation buckling to no buckling

$h = 40$ cm

$h = 32$ cm

$h \approx 25.2$ cm

load-displacement paths

$\lambda^*-\lambda$ curves
von Mises truss – decrease of initial rise

\(\lambda_2 - \lambda_4 - a_1 \) curve

mathematical conditions

- at point \(F = N = T \)
 \[\lambda_2 = 0, \quad \lambda_4 = 0, \quad \lambda_6 = 0, \ldots \]
 \[\tilde{K}_{T,\lambda\lambda} v_1 = 0 \quad \rightarrow \quad a_1 = 0, \]
 \[\tilde{K}_T d\tilde{u} = 0, \]
 \[v_{1*,\lambda\lambda} = 3a_{1*}v_1 \]

- saddle point of \(\lambda^*(\lambda) \)
 \[\lambda_1^* - \lambda = 0, \quad \lambda_1^*,\lambda = 0, \quad \lambda_1^*,\lambda\lambda = 0 \]

- “final situation”:
 saddle point of higher order
 \[\lambda_1^* - \lambda = 0, \quad \lambda_1^*,\lambda = 0, \quad \lambda_1^*,\lambda\lambda = 0, \]
 \[\lambda_1^*,\lambda\lambda\lambda = 0 \]
imperfection-insensitive truss

transition from bifurcation buckling to no buckling

Conclusions
H. A. Mang

pin-jointed bar
von Mises truss
cylindrical shell
linear prebuckling path
Conclusions

cylindrical panel

design parameters:
- thickness
- spring stiffness
- initial rise

load displacement path:

\[\lambda = \lambda^* \]

\[\lambda^* - \lambda \text{ curve:} \]
cylindrical panel – increase of shell thickness

\[t = 3.35 \text{ cm} \]

\[t \approx 6.35 \text{ cm} \]

\[t = 7.35 \text{ cm} \]

\[\lambda \]

\[u \]

\[\lambda^* \]

\[\lambda^* = \lambda \]

\[\lambda_1^* = \lambda \]

\[\lambda^* = \lambda \]

\[\lambda^* = \lambda \]

\[C \]

\[D \]

no conversion from imperfection sensitivity into insensitivity

Pin-jointed bar

von Mises truss

cylindrical shell

linear prebuckling path

Conclusions
cylindrical panel – increase of shell thickness

- no conversion from imperfection sensitivity into insensitivity

\[t = 3.35 \text{ cm} \quad t \approx 6.35 \text{ cm} \quad t = 7.35 \text{ cm} \]

details of load-displacement paths

\[\lambda^* = \lambda \]

details of \(\lambda^*-\lambda \) curves
cylindrical panel – increase of shell thickness

$\lambda_2 - \lambda_4 - a_1$ curve

mathematical conditions

- at point T

 $\tilde{K}_{T,\lambda\lambda} v_1 = 0 \rightarrow a_1 = 0,$

 $v_1^{*},\lambda = 0,$

 $v_1^{*},\lambda\lambda = 0,$

 $v_1^{*},\lambda\lambda = 0$
cylindrical panel – increase of spring stiffness

$t = 6.35\ \text{cm}$

✓ conversion from imperfection sensitivity into insensitivity

\[
c = 0 \\
\lambda = \lambda^* = \lambda \\
\]

\[
c = 75\ \text{kN/cm} \\
\lambda = \lambda^* \\
\]

\[
c = 200\ \text{kN/cm} \\
\lambda = \lambda^* \\
\]

load-displacement paths

details of $\lambda^* - \lambda$ curves
Conclusions

cylindrical panel – increase of spring stiffness

\(t = 6.35 \text{ cm} \)

✔ conversion from imperfection sensitivity into insensitivity

\[c = 0 \quad \quad c = 75 \text{ kN/cm} \quad \quad c = 200 \text{ kN/cm} \]

details of load-displacement paths

details of \(\lambda^* - \lambda \) curves
cylindrical panel – increase of spring stiffness

\[\lambda_2 - \lambda_4 - a_1 \] curve

mathematical conditions

- at point \(T \)
 \[\lambda_2 = 0, \quad \lambda_4 = 0, \]
 \[a_1 = 0, \]
 \[v_1^* \lambda \lambda = 0 \]
cylindrical panel – increase of spring stiffness

\(t = 7.35 \text{ cm} \)

✓ conversion from imperfection sensitivity into insensitivity

\[
c = 0 \quad c \approx 15 \text{ kN/cm} \quad c = 50 \text{ kN/cm}
\]

\[
\begin{align*}
\lambda & \quad \lambda & \quad \lambda \\
5 \quad 10 \quad 25 \quad 30 & \quad 5 \quad 10 \quad 20 \quad 25 \quad 30 & \quad 5 \quad 10 \quad 15 \quad 20 \quad 25 \quad 30
\end{align*}
\]

load-displacement paths

details of \(\lambda^* - \lambda \) curves
cylindrical panel — increase of spring stiffness

\[t = 7.35 \, \text{cm} \]

✔ conversion from imperfection sensitivity into insensitivity

\[
c = 0 \quad c \approx 15 \, \text{kN/cm} \quad c = 50 \, \text{kN/cm}
\]

load-displacement paths

details of \(\lambda^* - \lambda \) curves
cylindrical panel – increase of spring stiffness

\[\lambda_2 - \lambda_4 - a_1 \] curve

mathematical conditions

- at point \(T \)
 \[\lambda_2 = 0, \quad \lambda_4 < 0, \]
 \[v^T_1 \tilde{K}_{T,\lambda\lambda} v_1 = 0 \rightarrow a_1 = 0, \]
 \[v^T_1 \hat{K}_{T,\lambda\lambda\lambda} v_1 = 0 \rightarrow a_1^* = 0, \]
 \[v^*_1,\lambda\lambda = \sum_{j=2}^{n} c_{1j,\lambda} v^*_j \]
cylindrical panel – decrease of initial rise

\[t = 6.35 \text{ cm}, \quad c = 0 \]

transition from bifurcation buckling to no buckling

\[h = 8 \text{ cm} \quad h = 6 \text{ cm} \quad h \approx 4.0 \text{ cm} \]

load-displacement paths

details of \(\lambda^* - \lambda \) curves
cylindrical panel – decrease of initial rise

\[t = 6.35 \text{ cm}, \quad c = 0 \]

\[\rightarrow \text{transition from bifurcation buckling to no buckling} \]

\[h = 8 \text{ cm} \quad h = 6 \text{ cm} \quad h \approx 4.0 \text{ cm} \]

Details of load-displacement paths

Details of \(\lambda^* - \lambda \) curves
cylindrical panel – decrease of initial rise

\[\lambda_2 - \lambda_4 - a_1 \text{ curve} \]

planar point of \(\lambda^*(\lambda) \)

\[
\lambda_1^* - \lambda = 0, \quad \lambda_1^*,\lambda = 0, \\
\lambda_1^*,\lambda\lambda = 0, \quad \lambda_1^*,\lambda\lambda\lambda = 0
\]

mathematical conditions

at point \(F = N = T \)

\[
\lambda_2 = 0, \quad \lambda_4 = 0, \quad \lambda_6 = 0, \ldots
\]

\[
\tilde{K}_{T,\lambda\lambda} v_1 = 0 \quad \rightarrow \quad a_1 = 0,
\]

\[
\tilde{K}_T d\ddot{u} = 0,
\]

\[
v_1^*,\lambda\lambda = 0
\]

“final situation”:

saddle point of higher order

\[
\lambda_1^* - \lambda = 0, \quad \lambda_1^*,\lambda = 0, \\
\lambda_1^*,\lambda\lambda = 0, \quad \lambda_1^*,\lambda\lambda\lambda = 0, \\
\lambda_1^*,\lambda\lambda\lambda\lambda = 0
\]
cylindrical panel – decrease of initial rise

$t = 7.35 \text{ cm}, \, c = 15$

transition from bifurcation buckling to no buckling

$h = 9 \text{ cm} \quad h = 7 \text{ cm} \quad h \approx 6.0 \text{ cm}$

load-displacement paths

details of $\lambda^*-\lambda$ curves
cylindrical panel — decrease of initial rise

\(t = 7.35 \text{ cm, } c = 15 \)

\(\Rightarrow \) transition from bifurcation buckling to no buckling

\(h = 9 \text{ cm} \) \hspace{1cm} \(h = 7 \text{ cm} \) \hspace{1cm} \(h \approx 6.0 \text{ cm} \)

details of load-displacement paths

\[\lambda \]
\[\lambda^* \]
\[\lambda_1^* \]

details of \(\lambda^*-\lambda \) curves

\(\lambda^* = \lambda \)
cylindrical panel – decrease of initial rise

\[\lambda_2 - \lambda_4 - a_1 \] curve

Mathematical conditions

- at point \(T \):
 \[\lambda_2 = 0, \quad \lambda_4 < 0, \]
 \[a_1(\kappa) = 0, \]
 \[v_1^T \tilde{K}_{T,\lambda \lambda} v_1 = 0 \quad \Rightarrow \quad a_1 = 0, \]
 \[v_1^T \tilde{K}_{T,\lambda \lambda \lambda} v_1 = 0 \quad \Rightarrow \quad a_1^* = 0, \]

\[v_1^*,\lambda \lambda = \sum_{j=2}^{n} c_{1,j,\lambda} v_j^* \]
Pin-jointed bar with linear prebuckling paths

design parameters:
- spring stiffness
- length of one bar
Pin-jointed bar with linear prebuckling paths

load coefficients:

\[\lambda_2 = \frac{1}{6k(1+k)l^3} \left[(-3 + 3k + k^2)c_\phi - 3l^2(1 - k + k^2)c_2 + 3k^2l^2c_1 \right], \]

\[\lambda_4 = \frac{1}{120k^3(1+k)l^5} \left[(-15 - 15k + 5k^2 + 25k^3 + 9k^4)c_\phi - 15l^2(1 + k - 3k^2 + k^3 + k^4)c_2 + 15k^2l^2(-2 + 2k + k^2)c_1 \right], \]

\[\lambda_6 = \frac{1}{1680k^5(1+k)l^7} \left[(-105 - 105k - 35k^2 - 35k^3 + 77k^4 + 203k^5 + 75k^6)c_\phi - 105l^2(1 + k - k^2 - k^3 - k^4 + k^5 + k^6)c_2 + 105k^2l^2(1 + k - 2k^3 - k^4)c_1 \right]. \]
Pin-jointed bar with linear prebuckling paths

\[\lambda_2 - \lambda_4 \text{ curves (} a_1 = 0 \text{):} \]

\[T = Q \]

\[T \]

\[Q \]

\[\lambda_4 \]

\[\lambda_2 \]

\[\lambda_4 \]

\[\lambda_2 \]
Conclusions

- continuous increase of thickness
 ✔ no conversion into imperfection insensitivity

- decrease of the initial rise
 ⇒ transition to situation with no loss of stability
 (with reduction of stability limit)

- increase of the stiffness of spring
 ⇄ conversion from imperfection sensitivity into insensitivity
 (depending on thickness)